
INTERACTIVE ANALYTICAL DISPLAYS FOR
SPATIAL DECISION SUPPORT SYSTEMS

Marc P. Armstrong
Panagiotis Lolonis

Department of Geography
The University of Iowa
Iowa City, IA 52242

BLAMMGPD@UIAMVS.BITNET

INTRODUCTION

Geographic information system technology is now being placed in the
hands of decision-makers who often have little or no cartographic
training. Although it is possible that these users will glean
insight from the displays that they generate, map readers are able to
recover more information from a carefully designed display, than from
a poorly designed display. In our application, we are attempting to
integrate spatial modelling techniques (e.g. location-allocation
models) with the spatial data handling and display capabilities of
CIS, to improve the process of spatial decision-making. Although it
is important that decision-makers be provided with a capability of
viewing the results of spatial models, we wish to isolate users from
technical, mundane details of generating the display. To achieve
this goal we have developed techniques that allow an expert system to
assume responsibility for some aspects of thematic map layout and
design.

PREVIOUS WORK

Computer-Assisted Map Design

Monmonier has described a general system used to monitor the process
of layout for the National Atlas of the United States (Monmonier,
1982:159). In that system, predetermined configurations are used to
guide page design. Each configuration is assigned a code, and pages
are built from composites of these codes. Monmonier (1982: 159-163)
also describes several other areas of cartographic production that
lend themselves to automation: aggregation, data reduction to control
display of attribute data, and the general problem of map layout. In
his discussion, Monmonier distinguishes movable and fixed map
components. In our application, we expand this notion to develop
rules for determining the motility of map components.

Broome, Beard, and Martinez (1987) describe an approach to
determining the conditions under which an inset map should be
produced to enhance legibility, and then to decide where the inset
should be placed. The system attempts to mimic the process through
which a cartographic designer would arrive at the same answer. The
map is divided into cells, and the number of cartographic objects in
each cell is tabulated, and smoothed using a 9 cell window. This
notion of feature density is important in our application, but in a
slightly different way because we are concerned with finding empty
areas, rather than areas with high feature density.

171

Artifical Intelligence Approaches

Several researchers have been involved in exploring the application
of artificial intelligence principles to cartographic problem
solving.
Maggio (1987) suggests an approach in which a CIS becomes a part of
an expert system. Morse (1987) developed an approach in which
existing CIS software (MOSS) is augmented by an expert system shell
to facilitate the construction of a rule-based forest management
system. A general approach to developing an expert system for map
design is described by Robinson and Jackson (1985). Follow-up work
on a related project by Mackaness and Fisher (1986) shows how some
problems of map design can be resolved, and also points out the great
complexity involved in the process. Nevertheless, although Fisher
and Mackaness (1986) conclude that map design expert systems are
possible to construct, they stress that cartographic expertise is
both difficult to elicit and specify.

APPROACH TO SYSTEM DEVELOPMENT

In this paper we allocate map components to areas of a viewport in
such a way to lead to a maximum, balanced filling of space. To
accomplish this task, we use production rules to guide placement of
map components (e.g. legends and titles). The production rules are
derived from two general sources: cartography textbooks that purport
to deal with design, and personal experiences of the authors. From
the texts, we incorporated ideas about framing, and allocation of
space using the general strategy of "thumbnail sketches" advocated by
several authors (Robinson, et al. 1984; Cuff and Mattson, 1982; Dent,
1985). To make the problem manageable each map component is
delineated by its extent (bounding rectangle). This approach allows
us to deal with the size and location of elements without the
excessive amount of computation required for irregularly shaped
objects.

We have adopted a three stage approach to system development. The
first stage transforms the study area into an abstract representation
which can be easily manipulated by declarative programming languages.
The second stage arranges the map components within the viewport
using a set of rules designed to meet cartographic requirements while
avoiding conflict in displaying the map components. The third stage
consists of the transformation of the map components from the their
abstract representation into a displayable format.

Input to the Process

Two types of input are required at this stage. The first is a set of
vector chains (Figure 1) which define the perimeter of the area that
must not be overlapped by any other map component (e.g. legend).
Each straight line segment is represented as a fact in the knowledge
base. The second type of input consists of information about the
number, size, and shape of the remaining map components (e.g.
legend). To restrict the problem, we assume that the minimum space
requirements of each component has been determined at an earlier
stage of the layout and design process.

172

Rasterization of Map Boundaries

Vector format data are not well suited for detecting and evaluating
the size and shape of empty spaces where map components can be
placed. The use of vector data causes an additional problem because
our processes are formulated in a declarative environment. In
addition, the chains comprising the boundary of the study area might
have superfluous sinuosity; cartographers consider only the general
shape and not the details of objects when they make decisions about
map layout (Cuff and Mattson, 1982, p. 75). Unnecessary detail can
also exhibit more virulent effects associated with increased memory
requirements and decreased processing speed. For these reasons, we
transform chains to a coarse raster format (Figure 1). -The size of
the grid depends on the range of the coordinate values and the
dimensions of the display medium, and should neither introduce
unnecessary detail, nor substantially distort the area to be mapped.

When the cell size has been specified, then determining the cells
which correspond to the endpoints of each straight line segment is
straightforward. Specifically, the row and column number of each
endpoint cell on a staight line segment can be computed using the
following formulae:

Xci = (int (Xi) DIV d) + 1 (1)
Yci = (int (Yi) DIV d) + 1 (2)

where Xci : the column number of the cell for endpoint i
Yci : the row number of the cell for endpoint i
Xi : the x coordinate of endpoint i
Yi : the y coordinate of endpoint i
d : integer denoting the cell size in the same units

as Xi and Yi.
The determination of row and column numbers is iterative, and can be
implemented in PROLOG using backtracking and the fail predicate. The
results of this process are asserted as facts in the database. Each
fact stores the column and row numbers of the endpoints of the
corresponding segment. Figure 2 displays how the areas shown in
Figure 1 are transformed after the application of this process.

Rasterization of Segments

In order to determine the empty space around the map, all grid cells
comprising the boundary of the study area are defined. At this point
although we know the grid cells that terminate each straight line
segment, the remaining cells along the segment are calculated in a
vector to raster conversion. From the various algorithms which
rasterize line segments, Bresenham's was chosen because it is
efficient and easy to implement. Bresenham's algorithm uses the row
and column numbers of the end points of a straight line segment and
returns the row and column numbers of the set of grid cells which
most closely approximate the line segment (Foley and Van Dam,
1982:432).

We implemented Bresenham's algorithm in PROLOG. The program uses a
set of facts which define the endpoints of border segments of the
study area, and returns another set of facts which describe the
complete set of grid cells bounding the study area. The structure of
the new facts is shown in Figure 3, where each fact corresponds to a
cell defined by its column (X) and row (Y) number. In addition, each
pixel has an attribute indicating whether the corresponding cell is

173

part of the border of the area to be mapped. All remaining cells are
labeled "blank". If, for example, the data in Figure 2 were
processed using the algorithm, the outcome would appear as Figure 4.

Layout to Fill the Display Frame

The next steps eliminate empty space surrounding the mapped area, and
determine the frame dimensions such that the frame proportionally
fits the display area. To achieve this goal it is necessary to
determine the extent of the area, which is used as a "core" for any
further manipulations (e.g. translation, scaling). If the extent
fits in the display frame, and the remaining map components can be
arranged in the remaining empty space without violating any
cartographic standards, then a satisfactory solution has been
identified. Any attempt to further increase the scale of the map
would result in crossing the display border and in hiding part of the
information from the user. This suggests that it is promising to use
the extent of the study area as a starting point for solving the
problem of allocating map components in the display.

Given that the area to be mapped has been rasterized, and that the
cells defining the border of the area are given as facts (Figure 3),
the extent of a picture is determined by scanning all facts which
have "pixel" as a functor and "map" as an attribute value and then
finding the minimum and maximum row and column number. In Figure 4,
for example, the extent is defined by rectangle with corners (2,2)
(9,9). Row and column one and ten of that figure do not have shaded
cells, and thus can be eliminated without any loss of information
(Figure 5). Notice that the remaining rows and columns have been
renumbered for convenience. Determining the extent of an object is a
double loop iterative process which is implemented in PROLOG by using
the fail predicate and backtracking.

After determining the extent of the area, the next step is to place
the extent within a frame with dimensions proportional to the
dimensions of the viewport. If the dimensions of the extent are not
proportional to the viewport, columns or rows must be added to the
extent to achieve proportionality. The resulting frame is called the
adjusted extent. If required, then the number of columns that need
to be added can be computed using the formula:

X=(L/W)*w-l (3)
where:

X : is the horizontal extension in grid cell units
L : is the horizontal dimension of the viewport
W : is the vertical dimension of the viewport
w : the number of rows of the extent (vertical)
1 : the number of columns of the extent (horizontal)

If X is non-integer the number of columns to be added should be equal
to the next largest integer. If X is negative then this means that
rows must be added to the extent to achieve proportional dimensions.
A similar formula provides the magnitude of the extension along the
vertical dimension.

Determination of Space along the Border of the Extent

Up to this point we have transformed the study area into a format
which can be easily handled by a declarative language. The study

174

area also is at the largest scale that the display area permits, and,
finally, the area in the configuration is balanced. The next step of
the process consists of detecting the empty space surrounding the
study area into which the remaining map components can be placed.
That empty space is represented in a data structure such that:

-no useful empty space is undetected,
-the identification of size and shape of blocks of empty space is
easily determined, and finally,
-translations and scale changes can be made easily using a
declarative language.

The detection of useful empty space can be made if we scan the
rectangle, which results from the adjusted extent in the four
cardinal directions. For each row of a given scan direction, the run
length is determined. The run length is defined as the number of
empty cells from the frame to the first non-empty cell which is met
in the direction of scanning. Scanning Figure 5, for example, from
left to right would result in run lengths of: 3 for row 1, 3 for row
2, 3 for row 3, and zero for the remaining rows. Notice that a left-
to-right scan does not detect all empty cells (e.g. 2,4). These
cells, however, can be detected when the extent is scanned from
another direction. Continuing with the previous example, and
scanning from bottom to top, the corresponding run lengths are : 3
for column 1, 4 for column 2, 5 for column 3, and zero for all other
columns. The empty space at the top and right sides of the extent
are detected when Figure 5 is scanned from top to bottom and from
right to left. The only empty space which is outside the border of
the study area, and is not detected by any scan, is cell (6,4). Such
empty space is unlikely to be useful for placing map components.

Since we have identified a way for detecting the location, size, and
shape of useful empty space, the next problem that must be addressed
is the efficient representation of that information for subsequent
manipulations. This problem is solved by using a data structure to
store the direction and run length of each swath along each scan
direction. A swath is either a row or a column of the adjusted
extent depending on the direction of the scan. An abstract data
structure which enables the representation of all information related
to a scan direction is shown in Figure 6. Specifically, empty space
is represented as a compound object, which contains the scan origin,
the scan destination, and a list of objects containing information
about the swath number and its run length. Figure 6 also displays
how the data structure can be implemented as a PROLOG fact. Tables
1.1, 1.2, 1.3, and 1.4 show the information stored in the database if
our procedures are applied to the area shown in Figure 5. Each table
is a separate fact, and these four facts suffice to store all
information needed for evaluating the useful empty space of a
configuration.

Geometrical Transformations using the Data Structure

In this section it will be demonstrated how placement of map
components can be made using scale change and translation operations
and the data structure shown in Figure 6.

Change in scale. In this case we deal only with scale reductions
with respect to the frame of an area. Although enlargement can be

175

treated in a similar fashion we assume that we start with the largest
possible scale of the study area and reduce it, until we achieve a
satisfactory allocation of map components. The input of the scale
change procedure are four facts describing the empty space around the
border of the study area. The output of the procedure consists of
four new facts describing the empty space at the new scale.
Conceptually, reduction with respect to the frame can be made by
adding an appropriate number of rows and columns around the adjusted
extent. This increase in the frame size allows us to reduce the
scale, and helps to avoid difficulties resulting from the raster
format of the data.

To keep the dimensions of the frame proportional to the dimensions of
the display, we determine the number of rows and columns added at
each scale change. If L and W are the horizontal and vertical
dimensions of the final display, 1 and w are the horizontal and
vertical dimensions of the adjusted extent, and X and Y are the
number of columns and rows that must be added in the frame to reduce
scale, then the equation relating X to Y is:

X=(L/W)*Y= (1/w) * Y (4)
To overcome problems resulting when X (or Y) is non-integer, it is
suggested that Y be chosen first if W <= L. If X is non-integer then
the next largest integer is chosen. If, on the other hand, W > L
then the value of X should be chosen first. To keep the whole image
balanced after the addition of new columns and rows, half of the rows
and columns are distributed at the bottom and left sides and the
other half at the top and right sides of the image. An illustration
of this operation is shown in Figure 7.

After the addition of new rows and columns the empty space and thus
the run length of each swath has changed. If XL, XR, YB, YT indicate
the number of swaths added to the left, right, bottom, and top sides
of the adjusted extend respectively then, for the case of left to
right scan, the following rules determine the numbering and the run
length of each swath. Rules for other direction scans are specified
in a similar fashion.

Left to right scan:
- Add YB elements at the head and YT elements to the tail of

the list describing the empty space of the swaths. The swath numbers
of the new elements are integers and are selected such that the
elements of the list are in ascending order with respect to the swath
numbers. The run length of each new swath is set to be equal to XL +
1 + XR where 1 is the horizontal length of the frame of the study
area before the addition of new swaths.

-For every other element of the list :
If the run length of that element is equal to 1

then set the run length equal to XL+l+XR
otherwise set the run length equal to XL+RL
where RL is the old value of run length for
that swath.

If we choose XL=1, XR=1, YT=1, YB=1, 1=8, w=8 and we apply the
previous rules to Table 1.1, we will get Table 2.1. Applying similar
rules corresponding to the other three scan directions to Tables 1.2,
1.3, and 1.4, we obtain Tables 2.2, 2.3, and 2.4. Notice that the
last tables describe the useful empty space of the picture displayed
in Figure 7.

176

Translation to the right. Conceptually, translation of the study
area to the right with respect of its frame can be accomplished by
adding a number of columns at the left and deleting an equal number
of columns from the right side of the current frame (see Figures 7
and 8). This operation simply changes the relative position of the
objects with respect to the frame. If XL is the number of columns
which are added to the left side of the frame and the other variable
names have the same interpretation as in 3.6.1, then the rules
determining values for the new empty space are:
a Left to right scan.

- For each element of the swath list
If the run length of the swath is less than 1

then the new run length is RL + XL
otherwise the run length remains the same,

b Top to bottom scan.
- Add XL elements with appropriate swath numbers at the head of

the list containing information for the run length of each swath.
The run length of each new element is w.

- Delete XL elements from the end of the list. Only elements
which have run length equal to w are allowed to be deleted. Elements
with run length less than w can not be deleted because the
corresponding swath contains shaded cells and thus it is part of the
boundary of the study area.

Rules applied to the right to left and bottom to top scan are
analogous to a and b respectively. Applying such rules to Tables
2.1, 2.2, 2.3, 2.4 and taking XL=1 and w=10, Tables 3.1, 3.2, 3.3,
3.4 are derived. Those tables represent the useful empty space of
Figure 8.

Empty Block Size Determination

Information stored in the data structures representing empty space
can be manipulated to determine if a map component fits there. If,
for example, a 3 by 3 legend must be placed in Figure 5, the solution
is to put that legend at the bottom left. That block of empty space
can be identified if the values of Tables 1.1 through 1.4 are
examined. If the algorithm searches the swaths of Table 1.1 it will
identify that there are three consecutive swaths which have run
length equal to three -swaths 1, 2, and 3. It then can infer that
there is a 3 by 3 square of suitable empty space at the left side of
those swaths. If, on the other hand, the dimensions of the legend
were 3 by 4, the algorithm will fail to find a solution by traversing
Tables 1.1 through 1.4. Since no translation can be performed in
Figure 5, the next step is to do a scale reduction. Figure 7 shows
the result of such a reduction, and Tables 2.1 through 2.4 represent
the empty space of that figure. Searching the swaths in Table 1.1,
the algorithm can now identify four consecutive swaths with run
length greater than or equal to 3 -swaths 0, 1, 2, 3- and it will
come up with an answer. Similar reasoning can be applied for cases
where more than one map component must be allocated. In addition to
performing list searches, translations, and scale changes, the
program keeps track of space reserved for components that have
already been allocated.

177

CONCLUSIONS

In this paper the problem of allocating map components within a
viewport has been explored. A three stage approach is adopted to
determine the final layout for a simplified study area. The
preprocessing stage was the principal topic of our discussion. Data
representations and procedures, which allow satisfactory allocation
of map components using rules, were described. The effectiveness of
the chosen representations is illustrated using examples. The second
stage of the approach, which consists of the determination of rules
guiding the placement of map components, is currently a focus of our
work.

REFERENCES

Broome, F.R., Beard, C. (and Martinez, A.A. 1987. Automated map inset
determination. Proceedings. Auto-Carto 8, pp. 466-470.

Cuff, D.J., and Mattson, M.T. 1982. Thematic Maps: Their Design and
Production. New York: Methuen.

Dent, B.D. 1985. Principles of Thematic Map Design. Reading: Addison-
Wesley.

Fisher, P.F., and Mackaness, W.A. 1987. Are cartographic expert
systems possible? Proceedings. Auto-Carto 8, pp. 530-534.

Foley, J.D., and Van Dam, A. 1982. Fundamentals of Interactive
Computer Graphics. Reading, MA: Addison-Wesley.

Mackaness, W.A. and Fisher, P.F. 1987. Automatic recognition and
resolution of spatial conflicts in cartographic symbolisation.
Proceedings. Auto-Carto 8, pp. 709-718.

Maggio, R.C. 1987. The role of the geographic information systems in
the expert system. Proceedings. CIS '87, pp. 685-692.

Monmonier, M.S. 1982. Computer-Assisted Cartography: Principles and
Prospects. Englewood Cliffs: Prentice-Hall.

Morse, B.W. 1987. Expert system interface to a geographic information
system. Proceedings. Auto-Carto 8, pp. 535-541.

Robinson, A.M., Sale, R.D., Morrison, J.L., and Muehrcke, P.C. 1984.
Elements of Cartography (5th ed.). New York: John Wiley.

Robinson, G. and Jackson, M. 1985. Expert systems in map design.
Proceedings. Auto-Carto 7, pp. 430-439.

178

Figure Study area example Figure 2 Endpolnts of line segments

7 8 9 10 1 23 4567 89 10

Figure 4 Border of the study area

10

9

Figure 3 Structure for representation of cells 8

PixelI 7

_ _________ _________ 6
|column_No"| | Row_No | [Attribute^ 5

pixel (Column_No, Row_No, Attribute).

3

2

1

1 23 4567 9 10

Figure 5 Extent of the area Scan origin
Scan destination

Swa
th

Swath_no
Run_length

1
3

left
right

234
330

5 6
0 0

7
0

8
0

Table
Scan origin
Scan destination

Swa
th

Swath_no
Run_length

top
bottom

1 2 3
000

4
2

5 6
0 0

7
0

8
4

Table l 3
Scan origin
Scan destination

Swa
th

Swath_no
Run_length

right
left

1 2 3
000

4
0

5 6
3 4

7
1

8
1

Table
Scan origin
Scan destination

Swa
th

Swath_no
Run_length

bottom
top

1 2 3
345

4
0

5 6
0 0

7
0

8
0

179

Figure 6 Data structure for representation of empty space

SCAN ORIGIN SCAN DESTINATION SWATH

empty_space(Scan_ongm,Scan_dest1 nation,[swath(Swath_No, Run_Length)])

Table 2 I

Figure 7 Change in scale

10

Scan origin
Scan destination

Swa
th

Swath_no
Run_length

left
right

0 1 2
10 4 4

3 4
4 1

5678
1 1 1

9
1C

Table 22
Scan origin
Scan destination

Swa
th

Swath_no
Run_length

top
bottom

0123
10 1 1 1

4
3

5 6
1 1

7
1

8
5

9
10

Table 23
Scan origin
Scan destination

Swa
th

Swath_no
Run_length

right
left

01 23456789
10 1 1 1 ! 4 5 2 2 1C

Table 24
Scan origin
Scan destination

Swa
th

5wath_no
Run_length

bottom
top

0 1 2
10 4 5

3
6

456
l 1 1

7 {
l

3 9
1 1C

Figure 8 Translation to the right
Table 3 1

9 10

Scan origin
Scan destination

Swa
th

Swath_no
Run_length

left
right

0 12345678
1055522222

9
10

Table 32
Scan origin
Scan destination

Swa
th

Swath_no
Run_length

top
bottom

-1 01234567
10101 1 131 1 1

8
5

Table 33

Scan origin
Scan destination

Swa
th

Swath_no
Run_length

right
left

0123
10000

4
0

5
3

6 7
4 1

3 9
10

Table 34
Scan origin
Scan destination

Swa
th

Swath_no
Run_length

-l
10

bottom
top

0 l
10 4

2
5

3
6

4 5
1 1

6 7
1 1

8
1

180

