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INTRODUCTION

Geographic information system technology is now being placed in the 
hands of decision-makers who often have little or no cartographic 
training. Although it is possible that these users will glean 
insight from the displays that they generate, map readers are able to 
recover more information from a carefully designed display, than from 
a poorly designed display. In our application, we are attempting to 
integrate spatial modelling techniques (e.g. location-allocation 
models) with the spatial data handling and display capabilities of 
CIS, to improve the process of spatial decision-making. Although it 
is important that decision-makers be provided with a capability of 
viewing the results of spatial models, we wish to isolate users from 
technical, mundane details of generating the display. To achieve 
this goal we have developed techniques that allow an expert system to 
assume responsibility for some aspects of thematic map layout and 
design.

PREVIOUS WORK 

Computer-Assisted Map Design

Monmonier has described a general system used to monitor the process 
of layout for the National Atlas of the United States (Monmonier, 
1982:159). In that system, predetermined configurations are used to 
guide page design. Each configuration is assigned a code, and pages 
are built from composites of these codes. Monmonier (1982: 159-163) 
also describes several other areas of cartographic production that 
lend themselves to automation: aggregation, data reduction to control 
display of attribute data, and the general problem of map layout. In 
his discussion, Monmonier distinguishes movable and fixed map 
components. In our application, we expand this notion to develop 
rules for determining the motility of map components.

Broome, Beard, and Martinez (1987) describe an approach to 
determining the conditions under which an inset map should be 
produced to enhance legibility, and then to decide where the inset 
should be placed. The system attempts to mimic the process through 
which a cartographic designer would arrive at the same answer. The 
map is divided into cells, and the number of cartographic objects in 
each cell is tabulated, and smoothed using a 9 cell window. This 
notion of feature density is important in our application, but in a 
slightly different way because we are concerned with finding empty 
areas, rather than areas with high feature density.
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Artifical Intelligence Approaches

Several researchers have been involved in exploring the application 
of artificial intelligence principles to cartographic problem 
solving.
Maggio (1987) suggests an approach in which a CIS becomes a part of 
an expert system. Morse (1987) developed an approach in which 
existing CIS software (MOSS) is augmented by an expert system shell 
to facilitate the construction of a rule-based forest management 
system. A general approach to developing an expert system for map 
design is described by Robinson and Jackson (1985). Follow-up work 
on a related project by Mackaness and Fisher (1986) shows how some 
problems of map design can be resolved, and also points out the great 
complexity involved in the process. Nevertheless, although Fisher 
and Mackaness (1986) conclude that map design expert systems are 
possible to construct, they stress that cartographic expertise is 
both difficult to elicit and specify.

APPROACH TO SYSTEM DEVELOPMENT

In this paper we allocate map components to areas of a viewport in 
such a way to lead to a maximum, balanced filling of space. To 
accomplish this task, we use production rules to guide placement of 
map components (e.g. legends and titles). The production rules are 
derived from two general sources: cartography textbooks that purport 
to deal with design, and personal experiences of the authors. From 
the texts, we incorporated ideas about framing, and allocation of 
space using the general strategy of "thumbnail sketches" advocated by 
several authors (Robinson, et al. 1984; Cuff and Mattson, 1982; Dent, 
1985). To make the problem manageable each map component is 
delineated by its extent (bounding rectangle). This approach allows 
us to deal with the size and location of elements without the 
excessive amount of computation required for irregularly shaped 
objects.

We have adopted a three stage approach to system development. The 
first stage transforms the study area into an abstract representation 
which can be easily manipulated by declarative programming languages. 
The second stage arranges the map components within the viewport 
using a set of rules designed to meet cartographic requirements while 
avoiding conflict in displaying the map components. The third stage 
consists of the transformation of the map components from the their 
abstract representation into a displayable format.

Input to the Process

Two types of input are required at this stage. The first is a set of 
vector chains (Figure 1) which define the perimeter of the area that 
must not be overlapped by any other map component (e.g. legend). 
Each straight line segment is represented as a fact in the knowledge 
base. The second type of input consists of information about the 
number, size, and shape of the remaining map components (e.g. 
legend). To restrict the problem, we assume that the minimum space 
requirements of each component has been determined at an earlier 
stage of the layout and design process.
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Rasterization of Map Boundaries

Vector format data are not well suited for detecting and evaluating 
the size and shape of empty spaces where map components can be 
placed. The use of vector data causes an additional problem because 
our processes are formulated in a declarative environment. In 
addition, the chains comprising the boundary of the study area might 
have superfluous sinuosity; cartographers consider only the general 
shape and not the details of objects when they make decisions about 
map layout (Cuff and Mattson, 1982, p. 75). Unnecessary detail can 
also exhibit more virulent effects associated with increased memory 
requirements and decreased processing speed. For these reasons, we 
transform chains to a coarse raster format (Figure 1). -The size of 
the grid depends on the range of the coordinate values and the 
dimensions of the display medium, and should neither introduce 
unnecessary detail, nor substantially distort the area to be mapped.

When the cell size has been specified, then determining the cells 
which correspond to the endpoints of each straight line segment is 
straightforward. Specifically, the row and column number of each 
endpoint cell on a staight line segment can be computed using the 
following formulae:

Xci = ( int ( Xi ) DIV d ) + 1 (1) 
Yci = ( int ( Yi ) DIV d ) + 1 (2) 

where Xci : the column number of the cell for endpoint i 
Yci : the row number of the cell for endpoint i 
Xi : the x coordinate of endpoint i 
Yi : the y coordinate of endpoint i 
d : integer denoting the cell size in the same units

as Xi and Yi.
The determination of row and column numbers is iterative, and can be 
implemented in PROLOG using backtracking and the fail predicate. The 
results of this process are asserted as facts in the database. Each 
fact stores the column and row numbers of the endpoints of the 
corresponding segment. Figure 2 displays how the areas shown in 
Figure 1 are transformed after the application of this process.

Rasterization of Segments

In order to determine the empty space around the map, all grid cells 
comprising the boundary of the study area are defined. At this point 
although we know the grid cells that terminate each straight line 
segment, the remaining cells along the segment are calculated in a 
vector to raster conversion. From the various algorithms which 
rasterize line segments, Bresenham's was chosen because it is 
efficient and easy to implement. Bresenham's algorithm uses the row 
and column numbers of the end points of a straight line segment and 
returns the row and column numbers of the set of grid cells which 
most closely approximate the line segment (Foley and Van Dam, 
1982:432).

We implemented Bresenham's algorithm in PROLOG. The program uses a 
set of facts which define the endpoints of border segments of the 
study area, and returns another set of facts which describe the 
complete set of grid cells bounding the study area. The structure of 
the new facts is shown in Figure 3, where each fact corresponds to a 
cell defined by its column (X) and row (Y) number. In addition, each 
pixel has an attribute indicating whether the corresponding cell is
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part of the border of the area to be mapped. All remaining cells are 
labeled "blank". If, for example, the data in Figure 2 were 
processed using the algorithm, the outcome would appear as Figure 4.

Layout to Fill the Display Frame

The next steps eliminate empty space surrounding the mapped area, and 
determine the frame dimensions such that the frame proportionally 
fits the display area. To achieve this goal it is necessary to 
determine the extent of the area, which is used as a "core" for any 
further manipulations (e.g. translation, scaling). If the extent 
fits in the display frame, and the remaining map components can be 
arranged in the remaining empty space without violating any 
cartographic standards, then a satisfactory solution has been 
identified. Any attempt to further increase the scale of the map 
would result in crossing the display border and in hiding part of the 
information from the user. This suggests that it is promising to use 
the extent of the study area as a starting point for solving the 
problem of allocating map components in the display.

Given that the area to be mapped has been rasterized, and that the 
cells defining the border of the area are given as facts (Figure 3), 
the extent of a picture is determined by scanning all facts which 
have "pixel" as a functor and "map" as an attribute value and then 
finding the minimum and maximum row and column number. In Figure 4, 
for example, the extent is defined by rectangle with corners (2,2) 
(9,9). Row and column one and ten of that figure do not have shaded 
cells, and thus can be eliminated without any loss of information 
(Figure 5). Notice that the remaining rows and columns have been 
renumbered for convenience. Determining the extent of an object is a 
double loop iterative process which is implemented in PROLOG by using 
the fail predicate and backtracking.

After determining the extent of the area, the next step is to place 
the extent within a frame with dimensions proportional to the 
dimensions of the viewport. If the dimensions of the extent are not 
proportional to the viewport, columns or rows must be added to the 
extent to achieve proportionality. The resulting frame is called the 
adjusted extent. If required, then the number of columns that need 
to be added can be computed using the formula:

X=(L/W)*w-l (3) 
where:

X : is the horizontal extension in grid cell units
L : is the horizontal dimension of the viewport
W : is the vertical dimension of the viewport
w : the number of rows of the extent (vertical)
1 : the number of columns of the extent (horizontal)

If X is non-integer the number of columns to be added should be equal 
to the next largest integer. If X is negative then this means that 
rows must be added to the extent to achieve proportional dimensions. 
A similar formula provides the magnitude of the extension along the 
vertical dimension.

Determination of Space along the Border of the Extent

Up to this point we have transformed the study area into a format 
which can be easily handled by a declarative language. The study
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area also is at the largest scale that the display area permits, and, 
finally, the area in the configuration is balanced. The next step of 
the process consists of detecting the empty space surrounding the 
study area into which the remaining map components can be placed. 
That empty space is represented in a data structure such that:

-no useful empty space is undetected,
-the identification of size and shape of blocks of empty space is 
easily determined, and finally,
-translations and scale changes can be made easily using a 
declarative language.

The detection of useful empty space can be made if we scan the 
rectangle, which results from the adjusted extent in the four 
cardinal directions. For each row of a given scan direction, the run 
length is determined. The run length is defined as the number of 
empty cells from the frame to the first non-empty cell which is met 
in the direction of scanning. Scanning Figure 5, for example, from 
left to right would result in run lengths of: 3 for row 1, 3 for row 
2, 3 for row 3, and zero for the remaining rows. Notice that a left- 
to-right scan does not detect all empty cells (e.g. 2,4). These 
cells, however, can be detected when the extent is scanned from 
another direction. Continuing with the previous example, and 
scanning from bottom to top, the corresponding run lengths are : 3 
for column 1, 4 for column 2, 5 for column 3, and zero for all other 
columns. The empty space at the top and right sides of the extent 
are detected when Figure 5 is scanned from top to bottom and from 
right to left. The only empty space which is outside the border of 
the study area, and is not detected by any scan, is cell (6,4). Such 
empty space is unlikely to be useful for placing map components.

Since we have identified a way for detecting the location, size, and 
shape of useful empty space, the next problem that must be addressed 
is the efficient representation of that information for subsequent 
manipulations. This problem is solved by using a data structure to 
store the direction and run length of each swath along each scan 
direction. A swath is either a row or a column of the adjusted 
extent depending on the direction of the scan. An abstract data 
structure which enables the representation of all information related 
to a scan direction is shown in Figure 6. Specifically, empty space 
is represented as a compound object, which contains the scan origin, 
the scan destination, and a list of objects containing information 
about the swath number and its run length. Figure 6 also displays 
how the data structure can be implemented as a PROLOG fact. Tables 
1.1, 1.2, 1.3, and 1.4 show the information stored in the database if 
our procedures are applied to the area shown in Figure 5. Each table 
is a separate fact, and these four facts suffice to store all 
information needed for evaluating the useful empty space of a 
configuration.

Geometrical Transformations using the Data Structure

In this section it will be demonstrated how placement of map 
components can be made using scale change and translation operations 
and the data structure shown in Figure 6.

Change in scale. In this case we deal only with scale reductions 
with respect to the frame of an area. Although enlargement can be
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treated in a similar fashion we assume that we start with the largest 
possible scale of the study area and reduce it, until we achieve a 
satisfactory allocation of map components. The input of the scale 
change procedure are four facts describing the empty space around the 
border of the study area. The output of the procedure consists of 
four new facts describing the empty space at the new scale. 
Conceptually, reduction with respect to the frame can be made by 
adding an appropriate number of rows and columns around the adjusted 
extent. This increase in the frame size allows us to reduce the 
scale, and helps to avoid difficulties resulting from the raster 
format of the data.

To keep the dimensions of the frame proportional to the dimensions of 
the display, we determine the number of rows and columns added at 
each scale change. If L and W are the horizontal and vertical 
dimensions of the final display, 1 and w are the horizontal and 
vertical dimensions of the adjusted extent, and X and Y are the 
number of columns and rows that must be added in the frame to reduce 
scale, then the equation relating X to Y is:

X=(L/W)*Y= (1/w) * Y (4) 
To overcome problems resulting when X (or Y) is non-integer, it is 
suggested that Y be chosen first if W <= L. If X is non-integer then 
the next largest integer is chosen. If, on the other hand, W > L 
then the value of X should be chosen first. To keep the whole image 
balanced after the addition of new columns and rows, half of the rows 
and columns are distributed at the bottom and left sides and the 
other half at the top and right sides of the image. An illustration 
of this operation is shown in Figure 7.

After the addition of new rows and columns the empty space and thus 
the run length of each swath has changed. If XL, XR, YB, YT indicate 
the number of swaths added to the left, right, bottom, and top sides 
of the adjusted extend respectively then, for the case of left to 
right scan, the following rules determine the numbering and the run 
length of each swath. Rules for other direction scans are specified 
in a similar fashion.

Left to right scan:
- Add YB elements at the head and YT elements to the tail of 

the list describing the empty space of the swaths. The swath numbers 
of the new elements are integers and are selected such that the 
elements of the list are in ascending order with respect to the swath 
numbers. The run length of each new swath is set to be equal to XL + 
1 + XR where 1 is the horizontal length of the frame of the study 
area before the addition of new swaths.

-For every other element of the list :
If the run length of that element is equal to 1 

then set the run length equal to XL+l+XR 
otherwise set the run length equal to XL+RL 
where RL is the old value of run length for 
that swath.

If we choose XL=1, XR=1, YT=1, YB=1, 1=8, w=8 and we apply the 
previous rules to Table 1.1, we will get Table 2.1. Applying similar 
rules corresponding to the other three scan directions to Tables 1.2, 
1.3, and 1.4, we obtain Tables 2.2, 2.3, and 2.4. Notice that the 
last tables describe the useful empty space of the picture displayed 
in Figure 7.

176



Translation to the right. Conceptually, translation of the study 
area to the right with respect of its frame can be accomplished by 
adding a number of columns at the left and deleting an equal number 
of columns from the right side of the current frame (see Figures 7 
and 8). This operation simply changes the relative position of the 
objects with respect to the frame. If XL is the number of columns 
which are added to the left side of the frame and the other variable 
names have the same interpretation as in 3.6.1, then the rules 
determining values for the new empty space are: 
a Left to right scan.

- For each element of the swath list
If the run length of the swath is less than 1 

then the new run length is RL + XL 
otherwise the run length remains the same, 

b Top to bottom scan.
- Add XL elements with appropriate swath numbers at the head of 

the list containing information for the run length of each swath. 
The run length of each new element is w.

- Delete XL elements from the end of the list. Only elements 
which have run length equal to w are allowed to be deleted. Elements 
with run length less than w can not be deleted because the 
corresponding swath contains shaded cells and thus it is part of the 
boundary of the study area.

Rules applied to the right to left and bottom to top scan are 
analogous to a and b respectively. Applying such rules to Tables 
2.1, 2.2, 2.3, 2.4 and taking XL=1 and w=10, Tables 3.1, 3.2, 3.3, 
3.4 are derived. Those tables represent the useful empty space of 
Figure 8.

Empty Block Size Determination

Information stored in the data structures representing empty space 
can be manipulated to determine if a map component fits there. If, 
for example, a 3 by 3 legend must be placed in Figure 5, the solution 
is to put that legend at the bottom left. That block of empty space 
can be identified if the values of Tables 1.1 through 1.4 are 
examined. If the algorithm searches the swaths of Table 1.1 it will 
identify that there are three consecutive swaths which have run 
length equal to three -swaths 1, 2, and 3. It then can infer that 
there is a 3 by 3 square of suitable empty space at the left side of 
those swaths. If, on the other hand, the dimensions of the legend 
were 3 by 4, the algorithm will fail to find a solution by traversing 
Tables 1.1 through 1.4. Since no translation can be performed in 
Figure 5, the next step is to do a scale reduction. Figure 7 shows 
the result of such a reduction, and Tables 2.1 through 2.4 represent 
the empty space of that figure. Searching the swaths in Table 1.1, 
the algorithm can now identify four consecutive swaths with run 
length greater than or equal to 3 -swaths 0, 1, 2, 3- and it will 
come up with an answer. Similar reasoning can be applied for cases 
where more than one map component must be allocated. In addition to 
performing list searches, translations, and scale changes, the 
program keeps track of space reserved for components that have 
already been allocated.
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CONCLUSIONS

In this paper the problem of allocating map components within a 
viewport has been explored. A three stage approach is adopted to 
determine the final layout for a simplified study area. The 
preprocessing stage was the principal topic of our discussion. Data 
representations and procedures, which allow satisfactory allocation 
of map components using rules, were described. The effectiveness of 
the chosen representations is illustrated using examples. The second 
stage of the approach, which consists of the determination of rules 
guiding the placement of map components, is currently a focus of our 
work.
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Figure 6 Data structure for representation of empty space
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