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ABSTRACT

Different views of spatial resolution and accuracy present 
a major obstacle to the integration of remote sensing and 
GIS. Accuracy in remote sensing is modeled using 
probabilities of class membership in each pixel; in vector- 
based GIS it is modeled using concepts such as the epsilon 
band. The problem of linking the two views of accuracy 
reduces to one of realizing a stochastic process which must 
satisfy conditions of prior and posterior probabilities, and 
spatial dependence. We propose two suitable methods, one 
storage intensive and the other computationally intensive. 
The methods can be adapted to incorporate various forms of 
prior knowledge.

INTRODUCTION

Remotely sensed imagery provides a fast and efficient means 
of collecting large volumes of information about the earth's 
surface. Raw spectral responses can be registered, 
corrected and interpreted using sophisticated image 
processing systems, and a variety of methods of pixel 
classification have been developed to transform imagery into 
rudimentary maps for such themes as land use or vegetation 
cover. The response recorded for each pixel in a particular 
band is an integral over the area of the pixel of a 
continuous, spatially autocorrelated variable, and it is 
common to think of response data as a random sampling of a 
continuous surface or field. On the other hand a classified 
image can be conceptualized as an array of discrete values 
in which each pixel has been assigned to one of a number of 
classes.

A GIS can be defined as a system for input, storage, 
analysis and output of spatial information. As such, its 
main strengths lie in its ability to give the user access to 
an apparently scale-free, seamless electronic map, to 
analyze simultaneously different layers or coverages of the 
same area, to measure the lengths and areas of geographical 
objects, and to allow easy updating and editing. The 
capabilities of a GIS can greatly extend the usefulness of 
a classified, remotely sensed image by allowing access to 
other data either to improve the accuracy of classification, 
or to enhance the range of possible analyses. On the other 
hand remote sensing has much to offer GIS as a source of
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easily updated and low cost input data. For these reasons 
numerous attempts to integrate remote sensing and CIS have 
been described in the literature.

Vector-based GISs model the world as populated by objects. 
specifically classes of points, lines or areas. Land cover 
is often modeled in such a system as a class of non- 
overlapping areas which exhaust the study space, each area 
being associated with one or more attributes which describe 
its land cover class. In practice the use of this model is 
largely independent of the means by which the data was 
acquired, whether by digitizing the lines on an existing map 
of land cover, scanning an existing map and vectorizing the 
resulting image, or using an image processing system to 
classify and vectorize a remotely sensed image. However the 
appearance of the data may reveal the source, as pixel edges 
will likely still be evident in a layer obtained from remote 
sensing, unless the lines have been subsequently smoothed.

Although there are undoubtedly significant technical 
problems in interfacing remote sensing and CIS, we wish to 
argue in this paper that the conceptual problems of 
interfacing systems which view the world respectively as 
fields and objects are in the long run more challenging, and 
will be a more substantial obstacle to the use of remotely 
sensed images in object-based systems. Our purpose in this 
paper is to explore the implications of such interfacing 
from the perspective of the interrelated issues of spatial 
resolution, error and accuracy. More specifically, the 
paper examines the extent to which concepts of error in 
imagery can be related to corresponding concepts of error in 
objects. The paper expands on work previously described by 
Goodchild and Wang (1988).

The next section reviews recent efforts to deal with the 
problem of uncertainty in object-based CIS. This is 
followed by a discussion of error in classified imagery, and 
by a review of techniques which can be used to interrelate 
these two views of the accuracy of spatial information.

ERROR IN OBJECT-BASED CIS

The use of high precision digital processing on data of 
undetermined accuracy has inevitably raised awareness of the 
problems of error in spatial data handling in recent years 
(see for example Walsh, Lightfoot and Butler 1987; Burrough 
1986), besides leading to specific artifacts such as sliver 
polygons (Goodchild, 1979) and conflicts between geometry 
and topology (Franklin, 1984). Problems are made 
particularly acute by the ease with which a GIS can be used 
to change the scale of data without a corresponding change 
in its spatial resolution, and by the degree to which GIS 
processing of data from multiple sources distances the user 
from the data collection and interpretation process. As a 
result the users of GIS products are often unaware of the 
uncertainties and caveats which surround any spatial 
information.

Statistical models of the uncertainty in the locations of
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point objects are well developed in surveying and geodesy. 
However their extensions to more complex line and area 
objects are not straightforward for several reasons. A 
model of the relationship between a true line on the ground 
and its representation as a series of digitized points and 
connecting straight lines in a spatial database must include 
not only the correlations which exist between errors at 
neighboring points (Keefer, Smith and Gregoire 1988), but 
also the process by which the points themselves were 
selected by the digitizer operator.

Despite these difficulties, simple approaches to describing 
accuracy of object representations can be found in the 
concepts of tolerance and error bands used in many 
digitizing and overlay systems. The Perkal epsilon band 
(Perkal 1956; Blakemore 1984) is a buffer of width epsilon 
on either side of a line or polygon boundary. In 
digitizing, two lines can be assumed to join and are 
consequently 'snapped' together if one lies within the 
other's epsilon band; similarly, in overlay, a line on one 
map which lies within the epsilon band .of a line on the 
other map is assumed to represent the same line on the 
ground, and any associated sliver polygons are therefore 
removed. Unfortunately this deterministic view of the 
epsilon band can produce unwanted results in the following 
way. Line A can be found to lie within line B's band, 
indicating that A and B are the same; A can lie in C's band 
indicating that A and C are the same; but C can lie outside 
B's band. In this situation it is easy to generate 
inconsistencies, particularly if the positions of objects 
are adjusted in operations such as snapping. A 
probabilistic version of the concept could potentially 
resolve such problems.

The process of digitizing tends to result in errors and 
distortions which are substantially constant over a map, and 
depend only on the scale at which the map was digitized. On 
the other hand other, often more significant sources of 
error are unfortunately not as constant. It is common to 
distinguish between processing errors, which include those 
introduced during digitizing, and the source errors which 
exist between the source document and the reality which the 
document models. In the case of a land cover map these 
include the inaccuracies which result from modeling a 
complex pattern of spatial variation with a relatively small 
number of homogeneous areas separated by sharp 
discontinuities; in reality areas are not homogeneous and 
boundaries mark zones of transition rather than sharp 
breaks. Although it may be possible to model many forms of 
processing error (see for example Amrhein and Griffith 1987; 
Keefer, Smith and Gregoire 1988), it is virtually impossible 
to describe source errors without access to additional 
information such as ground surveys.

ERROR IN CLASSIFIED PIXELS

Many methods of image classification estimate the 
probability that a pixel belongs to each of a set of 
possible classes: commonly, the class to which the pixel is

532



finally assigned is that having the largest probability. 
However the complete set of probabilities for each pixel 
constitutes a useful source of information on the 
uncertainty of classification. Let the subscript i denote 
one of the n pixels, j denote one of the m classes, and let 
the vector {pn ,pj 2 / • • • i P,- m } denote the set of probabilities 
for pixel i. Let M,-, M,. = k | p ik>pjj v j^k, be the most 
likely class.

A maximum likelihood classification based on Mf allows easy 
restructuring of the pixels to objects using a raster/vector 
conversion algorithm, but it implicitly deletes all 
potentially useful information on uncertainty, thus creating 
the kind of situation we have already described as common 
for object-based models of such themes as land cover. We 
propose instead that the entire vector be passed to the CIS, 
allowing CIS analysis to incorporate uncertainty into its 
processes and products. In most applications it is likely 
that only a small proportion of the m probabilities for each 
pixel will be significantly large, so we need not 
necessarily assume that this strategy will result in an in 
fold increase in the storage requirements of this particular 
layer.

In order to obtain objects from the vectors of probabilities 
we must first create a realization, or a specific outcome of 
the stochastic process which the probabilities define. Let 
X,- denote the class to which pixel i is assigned in a 
particular realization: the maximum likelihood 
classification generates an outcome of the stochastic 
process by simply assigning X,- = M,-. The same set of 
probabilities can be used to produce multiple realizations 
or outcomes, corresponding to the tossing of a dice, and the 
differences between outcomes represent uncertainty.

The simplest realization would be a multinomial process in 
which the outcome in each pixel is determined independently, 
based on the known probabilities. A simple approach would 
be to generate a random number x,, 0<Xj<l, and assign class 
k if:

k-l k 
2 p,.. < x, < 2 pfj (1)

j=l j=l

However the result would appear unreasonably fragmented 
because of the independence of the outcome in neighboring 
pixels, and it is very unlikely that large, homogeneous 
patches of similarly classified pixels would develop except 
where one probability is close to 1 and classification is 
therefore almost certain. This process would fail therefore 
to model the common situation in remote sensing where a 
large patch of many pixels returns a homogeneous spectral 
response, but nevertheless has a very uncertain 
classification. A further objection is that by ensuring 
homogeneity within pixels but independence between them, we 
create a result which is very dependent on pixel size.

These objections can be removed if the outcomes in 
neighboring pixels are allowed to be correlated. In 
essence, we reguire a process of realization in which two
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properties are satisfied: a) the proportion of realizations 
in which pixel i is assigned class j tends to p^- as the 
number of realizations tends to infinity (posterior and 
prior probabilities are equal), and b) outcomes within one 
realization display a prescribed level of spatial 
dependence.

METHODS OF REALIZATION

Goodchild and Wang (1988) described a process in which each 
pixel was first independently assigned to a class. This 
initial image was then repeatedly convolved with a low-pass 
filter, in order to impose spatial dependence (see also the 
ICM technique of Besag 1986). The paper illustrated the use 
of a 3 by 3 filter with the rule that in each pass the 
central pixel was assigned the modal class of the 9 pixels 
within the filter window. This process was demonstrated to 
generate spatially dependent realizations, allowing 
uncertainty in pixel classifications to be converted to 
uncertainty in the location of objects and to concepts such 
as the epsilon band. However it is easy to show that the 
low-pass filter generates posterior probabilities which are 
not equal to the prior probabilities, violating the first 
requirement above, except in special cases.

Cross and Jain (1983) have described a process of modeling 
spatially dependent images in which an initial set of 
outcomes, such as that produced by our simple multinomial 
process above, is modified by selectively swapping the 
contents of randomly selected pairs of pixels (see also 
Goodchild 1980). Again, while the result is a pattern which 
has strong spatial dependence, in general the prior and 
posterior probabilities in each pixel are not equal.

Two approaches appear to offer a way of satisfying both 
requirements simultaneously, one computationally intensive 
and the other storage intensive. The latter is conceptually 
simpler and will be described first. Let q denote a number 
of realizations, say 100, and suppose that initial classes 
are assigned to each pixel in each of q realizations by the 
multinomial, spatially independent process. The proportion 
of realizations in which a given pixel is assigned to a 
given class will be approximately equal to the prior 
probability. Now suppose that some means exists to measure 
the level of spatial dependence present in any one 
realization, and that a target value for this measure has 
been defined. Suitable measures can be found in the 
literature on indices of spatial autocorrelation (Cliff and 
Ord 1981; Goodchild 1988). The technique then executes the 
following steps until the target is reached, or no further 
improvement can be obtained:

select a pixel at random;
for that pixel, select a pair of realizations at random;
if the pixels are currently assigned to different
classes, then;

swap the contents of the pixels if by so doing the 
recomputed measure is closer to the target;

end if;
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repeat.

Because the technique cannot change the numbers of each 
class assigned to any one pixel across the set of 
realizations, we ensure that the posterior and prior 
probabilities are equal.

The second method implements a spatially autoregressive 
process in which the value in any cell is correlated with 
the value in nearby cells (Haining, Griffith and Bennett 
1983). A spatially autoregressive process on a lattice can 
be defined as:

Z = p W Z + € (2)

where: z. is the value assigned to pixel i by the process; 
p is a spatial autocorrelation parameter; 
W is an n by n array of interactions between pixels; 
e- is an independent, normally distributed error 
term with zero mean and variance a2 .

We assume that W,-- is 1 if pixels i and j are 4-adjacent, 
else 0. The solution for z is given by:

z = (I - p W)' 1 € (3)

The z are known to be multivariate normal with zero mean and 
with variance-covariance matrix given by (Haining, Griffith 
and Bennett 1983):

a2 [(I - p W) T (I - p W)]' 1 (4)

We can obtain a class X- for pixel i from the following rule:

X,- = k iff F( 2i )<Pi (5)

where F(z) is the probability that an independent, normally 
distributed random number with mean 0 and variance given by 
the diagonal terms of (4) exceeds z.

Unfortunately the technique requires the inversion of an n 
by n matrix, and special methods are necessary to generate 
realizations in arrays of more than about 8 by 8 pixels.

Both techniques have the advantage that it is easy to 
include prior information about such objects as field 
boundaries, roads or water. The spatial dependence between 
pixels across a significant boundary can be deleted by 
setting the appropriate terms in W to zero instead of 1, 
which will cause the boundary to emerge in each realization. 
In the swap technique the same effects can be achieved by 
setting appropriate terms in the evaluation function, which 
will in most cases include the equivalent of the W matrix. 
Similarly the presence of known classes such as water can be 
dealt with by setting the associated probability to 1 and 
all others to 0 in affected pixels.

DISCUSSION
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The techniques described can be used to simulate the effects 
of uncertainty in both field and object views of spatially 
varying phenomena. Goodchild and Wang (1988) illustrate the 
generation of a cross-classification matrix, which is the 
approach often used in image processing to assess accuracy, 
and the sliver polygons and epsilon bands of the object- 
based approach to accuracy. Although these methods 
emphasize the equivalence between the measures used in both 
views, we stress that it is the field-based probabilities 
which are externally generated, while the object-based 
measures must be derived from them. This serves to 
emphasize the earlier point that an object-based view of 
spatial data rarely carries information on which an 
objective model of accuracy can be based.

The techniques provide a framework within which it is 
possible to discuss a number of conceptual models of 
uncertainty in spatial data. We have argued that the 
independent pixel is almost always inappropriate: because 
of spatial dependence these techniques produce patches whose 
size and shape are controlled by user-defined parameters and 
largely independent of pixel size. By setting appropriate 
levels of spatial dependence it is possible to produce a 
range of outcomes from highly fragmented and scattered 
patches when spatial dependence is low and local, through 
large patches which result from the aggregation of numbers 
of spatially dependent choices. With high levels of spatial 
dependence and with appropriately set terms in the W matrix, 
it is possible to have predefined patches in which the 
outcome is essentially the result of a single trial, thus 
simulating the example of the multi-pixel field whose entire 
class is uncertain.

We have thus far assumed that spatial dependence is a 
stationary property of the entire array. In reality some 
classes display patches which are more fragmented than 
others, and spatial dependence also varies from one region 
to another. In the future we hope to develop methods which 
will successfully simulate these conditions as well.
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