
MULTISCALE DATA MODELS FOR SPATIAL ANALYSIS, 
WITH APPLICATIONS TO MULTIFRACTAL PHENOMENA

Lee De Cola

Department of Geography 
University of Vermont
Burlington VT 05405 

BITNET: L DECOLA@UVMVAX

ABSTRACT

Most of the discussion in the CIS community is concerned at the highest 
level with the support of managerial issues and at the lowest level 
with engineering considerations. Scientific considerations of 
analytical flexibility and conceptual suitability tend to be slighted. 
One reason for this situation is the complex, multiscale, and 
"heterodimensional" world with which the scientist is concerned. The 
new models of spatial fractals and temporal chaos are making aggressive 
inroads in our understanding of complex systems, and they deserve to 
inform considerations of the data models that will fruitfully capture 
variation in space, time, and scale. I present the outline of a data 
model that I have found useful, along with examples of its use. The 
model is well suited to current advances in data organization, 
hardware, and parallel algorithms.

INTRODUCTION

While definitions of geographical information systems abound, little 
attention is given to the important differences between the managerial 
and scientific cultures that use such systems. Consequently, much of 
the CIS literature is ambiguous about whether a given system—either 
proposed or actual—is suitable for research as well as management. 
Because CIS designers and engineers, who are not necessarily the same 
community as scientific users, are usually concerned about efficiency 
and ease of use, such matters as data structure adaptability and 
analytical flexibility tend to be overlooked.

Substantively, the broad class of managers tend to be concerned with 
the support of decisions and legal issues, rather than the rules of 
scientific inquiry (Kaplan 1964). Managers (regional planners 
included) tend to work within a limited range of scales, say one or two 
orders of magnitude for any given task. (In what follows I shall use 
"scale" in its everyday, physical interpretation rather than its 
cartographic sense.) Moreover, at any given scale, managers focus on 
ideal phenomena of integral dimension: D = 1 points, D = 2 curves, and 
D = 3 areas (including most especially polygons). CIS engineers seek 
to serve these needs by pursuing speed, data compactness, and user 
friendliness in system design.

Scientists, however, and especially workers in a rapidly changing field 
like spatial analysis, tend to have different concerns. First their 
style of work tends to be flexible, tentative, often even sloppy by 
managerial standards: prompting the claim popular in our computer 
center to the effect that "If we knew what we were doing, it wouldn't 
be called research!" One manifestation of this flexibility is the
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willingness—even the enthusiasm—of scientists to patch together 
disparate pieces of hardware and to use quick and dirty programs to 
link Various software packages to achieve what they want at the moment 
for a particular research question.

More importantly, spatial analysts are interested in processes. 
particularly in many different interrelated conceptual realms: 
physical, biological and human. Consequently, they are trained from 
professional birth to relate to the world through models of process 
rather than the more rigid and legalistic structures of management. 
One consequence of this process orientation is that scientists also 
often want to simulate data by asking whether a suitably circumscribed 
set of assumptions can yield results like the complicated phenomena 
they find in their data. In fact, simulation can be defined as the art 
of getting complicated results from simple causes, but there is little 
evidence that CIS designers seek to support such earnest playfulness.

Another consequence of scientific interest in process is that 
scientists need to look at the world at a very wide range of temporal 
and spatial scales: often orders-of-magnitude-of-orders-of-magnitude: 
from millimeters to 10,000 km, from minutes to millennia. For earth 
scientists in particular this concern with extreme scale ranges is 
stimulated by a growing anxiety about the need for global monitoring, 
to link small causes with large effects, to test the limits of 
scientific ability to capture, store, analyze, and interpret vast 
amounts of data (IGBP 1988, p.79).

The mind of the scientist is therefore in nearly continual dialogue 
with his or her model, itself used to extract data from the world and 
to produce images, maps, tables, plots, and various statements 
predicting the world's complicatedness by explaining its underlying 
complexity. The CIS engineer, while concerned about ways of managing 
the world, is less preoccupied with the extent to which new systems may 
influence our mental images of the universe, much as did the earlier 
telescope or microscope (Abler 1987). While I suspect future CIS 
developments will overcome this limitation, for now the CIS focus is 
not particularly flexible, process-oriented, or multiscale.

FRACTALS AND MULTIFRACTALS

How then shall we conceive of a CIS that, while not specifically 
designed for scientific use, nevertheless fosters reasonable analytical 
ambitions? I cannot presume to fully specify such a system, first, 
because the above agenda is obviously broad and quite general, and 
second, because our collective experience with such activities is still 
in many ways quite limited compared with the more narrowly defined 
tools and questions of more traditional sciences. But if I were to set 
a task for a geographical analysis system it would be to address the 
problem of flexibly handling the input, analysis, and output of data 
which occur at many scales and which have fractal characteristics.

The first problem with the handling of data from a phenomenon that 
manifests itself over a range of scales is the requirement of large 
amounts of storage area and a great deal of computer power. Because

DATA VOLUME = SCALE X RESOLUTION X VARIABLES (1) 
even small increases in any of these terms will bring major jumps in 
amounts of data if the other is already large. Although I shall be 
cavalier in what follows by disregarding storage specifications, any 
concrete attempt to design the system I propose will demand both a lot
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of hardware and a lot of engineering skill, including heavily parallel 
and connectionist approaches.

The second problem with scale is that the mind manifests a certain 
scale inertia: we tend not to make ready mental shifts in magnitude. 
Although the forest/tree distinction is familiar to everyone, few 
people recognize that for some analytical purposes it helps to conceive 
of forests and trees as part of a conceptually unitary phenomenon in 
which many processes interact at many scales to reveal structures that 
are, not at all paradoxically, "scaling," i.e. ranging from the nearly 
infinitely large to the nearly infinitely small (and quite intense). 
So we talk about trees and forests (read neighborhoods and urban 
systems, rocks and mountains) as though they were different entities 
rather than mental images of the same thing. The fractal paradigm is 
helpful here.

Fractals are phenomena which are self-similar: images and measurements 
of fractals taken at one scale tend to be similar to images and 
measurements at another scale. The problems this presents for 
traditional science can be understood by considering the following 
history. The goal of classical science has traditionally been to look 
for regularities (linearities or log-linearities) in data: this often 
entails measuring variables operationally defined within a narrow range 
of scales, then modelling relationships, and finally sweeping what is 
left into an error term. Fractal research challenged this approach by 
arguing that in many realms virtually everything may be "error". Early 
geometrical research demonstrated how ideal fractals were scale- 
invariant, implying that the new regularities were captured by D, a 
parameter which could be used to "explain" the phenomenon. This 
conclusion, while naive, is less egregious than the notion that scale 
is unimportant. Scale (like money) matters, and must be explicitly 
part of any spatial analysis system.

Later work on stochastic fractal phenomena generated images and data 
that were more realistic, to be sure, but also spawned a number of 
different fractal dimensions depending upon the model or the aspect of 
the phenomenon under study (Stanley 1986). This tends to be upsetting 
unless one realizes that different facets of a process (say the 
perimeter of a region versus its "mass") will have different fractal 
dimensions. The lesson here is for a spatial analysis system to allow 
clarity about these facets and their measures.

The latest phase of research—and we are now at the cutting edge 
because an aggressive game is being played with the real world—has 
begun to focus on real. multifractal phenomena whose fractal dimensions 
vary with time, with space, and (although it may seem paradoxical) with 
scale itself (Feder 1988). Specifically because the universe is made 
of systems (molecules, people, planets) with characteristic lengths, 
system behavior changes with scale. Much of this work is still highly 
theoretical, but some is empirical: perhaps the most relevant to 
spatial analysts is the research of Lovejoy and others on turbulence in 
meteorological systems (Gabriel et al 1988) as well as that on 
earthquakes (Kagan 1980).

The key notion here is that seismological, meteorological, and, to be 
boldly hypothetical, cultural systems are intermittent processes 
generating structures in a dissipative cascades from larger scales to 
smaller. At the largest scale such systems generate space-filling 
structures of D - 3, while at the smallest we find "singularities" of D 
- 0. The lesson for geographers, in particular, is that such key
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descriptions as area, intensity, variability, complicatedness, etc. 
will vary not only with time and space but also with scale. The 
challenge remains to extract regularity from these data by being able 
to exert control, in the quasi-experimental sense of collecting lots of 
data, over scale.

Geographic science is a full participant in this revolution. 
Geographers have made early and enthusiastic use of these notions and 
have revealed the multifractality of terrain over space (Mark and 
Aronson 1984, Roy et al 1986), of coastlines over scale (Goodchild 
1980), of sedimentation over time (Plotnick 1986), of variation over 
scale (Woodcock and Strahler 1987) and of point pattern over density 
(Harvey 1968, De Cola 1987).

The positive side of all this is that quite parsimonious fractal models 
are yielding important results in a wide variety of fields and that 
various dimensions, provided they are operationally defined and 
displayed for a range of times, places, and scales, are extremely 
powerful descriptors of real phenomena. Moreover, fractal theory 
teaches that we often need fewer variables than we thought, which 
mitigates the Devil's bargain reflected in Equation 1. Still, when it 
comes to memory and speed, more is quite clearly more, and can 
sometimes compensate for lack of conceptual rigor.

DATA MODELS

Any geographical analysis system for scientific research must therefore 
be capable of gathering, managing, and displaying data from fractal 
phenomena. Rather than narrowly specifying a data structure for such 
analysis, however, my ambition is more modest. Peuquet (1984, p. 69) 
defines a data model as "a human conceptualization of reality, without 
consideration of hardware and other implementation conventions or 
restrictions." Certainly the conceptual specifications that follow, 
along with the examples, can be translated into the syntax of any 
language (such as C or Pascal) permitting variant and dynamic records 
as well as recursion. Greater specificity would obscure a heuristic 
approach to structure and an algorithmic approach to process (Smith 
1987).

The above outline of fractal research calls for a discussion of four 
issues. First, we should be clear about the topological realm in which 
we are working. To begin, I shall not be concerned with phenomena in a 
third (physically vertical) dimension, although it is clear that the 
analysis of terrain data is basically a question of analyzing variation 
in space (Weibel 1988). In terms of integral dimensions, the 
topologies of the phenomena to be examined range from simple points to 
space-filling areas, but note how differently these topologies are 
treated:

DIMENSION
0 
1

2

GEOMETRY
Point 
Curve

Area

SPATIAL 
ANALYSIS
Event 
Link or 
Perimeter 
Region

REMOTE 
SENSING

Location 
Pixel edge

Pixel

CIS
Location 
Vector

Polygon

I shall not attempt to do more than acknowledge this incommensurability 
except to note that what sometimes appears to be a culture conflict may 
be quite profound: the data structures of CIS are based on atomic units
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that are not only too small to be detected with remote sensing 
techniques, they simply do not exist in the two dimensional system (D = 
2) used by sensors. This is not to make the trivial observation that a 
benchmark location, a road centerline, or a state boundary is 
invisible; but rather that they exist in a space of dimension too low 
even to be incorporated in such a system. Now remote sensing projects 
3- and 4-dimensional phenomena into 2-dimensional data, but 
unfortunately projection only works one way. It is impossible to 
"project" 1-dimensional CIS entities into a 2-dimensional map. (For a 
related discussion of this problem see Lovejoy's (1985) discussion of 
meteorological networks.)

A second area requiring specificity is the distinction between scale 
and resolution. Although the term scale is used cartographically to 
represent the size that the representation of an object on a map bears 
to its "real" size, I choose here to use scale in its more commonplace 
(and physics) sense of the characteristic size of the real object. In 
contradistinction, I shall use resolution to mean the smallest areal 
unit at which a distinction of spatial variation can be made. On the 
one hand, a data structure must be able to incorporate measurements at 
the highest resolution made available by sensors (consequently it must 
be big) while at the same time capturing or permitting the creation of 
structures of often enormously large scale (Equation 1 above). The 
data model must also be able to integrate measurements from sources 
with different resolutions. On the other hand, this need for breadth 
of scale is mitigated by the fact that scientific data need not be 
stored with great absolute locational accuracy (Burrough 1988). 
Third, the data model must reflect clarity of thinking as well as 
flexibility about such things as features, objects, and entities. I 
have opted below to call homogeneous clusters of cells "regions," but 
readers are unlikely to agree that the world can be partitioned into 
such sets. While the regions are constructed "bottom-up" by 
aggregating cells, how they are generically defined, functionally 
specified, or identified by name will be a function of their scale as 
well as that of the analysis.

Finally, the system also needs to operate "top-down," beginning with a 
dataset and subdividing it into subsets of greater homogeneity or 
requiring small-scale analysis. Quadtrees and their variants are a 
popular approach to this problem, and I would argue that the full 
pyramid represented by a complete quadtree structure suggests the 
approach called for. It should also be recognized that the size of a 
quadtree is a direct reflection of fractal dimension (Samet 1984, p. 
227).

EXAMPLES

In the present case, we begin with grid dataset, conceived of as a 
lattice of (2L) 2 0-level cells x_ ., where i = 1,...,(2L) 2 . Let there 
be a value f(x« .) assumed to be univariate and to be an explicit, 
monotone functi6n of some underlying measurement: i.e. f could be an 
observation of events people- photons, trees, votes, etc. Let a A- 
level lattice or layer of (2 ) cells be constructed with f(x. .) = 
Sf(x , .), where the summation is over the j = 1,...,4 children cells 
of x1 . . See the following figure:
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Three things should be noted. First, for layer A+l to be a true 
aggregation of layer A it is important that f be a linear function of 
the measured phenomenon, otherwise we need a way to recover the 
measurement from the data (Richards 1986). Second, the possibility of 
f being multivariate is a complexity I shall not explore. Third, 
although the present lattice is of dimension 2, the lattice could be of 
side (2L)3 or even dimensionally larger, to include time, etc. 
A histogram of {f,\} would describe each layer A, and if f were a 
digital transformation of the underlying count then the abscissa of 
this histogram would be limited (as in the case of a Landsat band to 2 
values). In any case various parametric (moments) and nonparametric 
statistics will also be used to characterize the layers. These 
statistics would indicate the presence of cells with unusual 
concentrations (or absences) of events. Higher, more aggregate, levels 
could be used to scan the image for intense activity. 
Next, let t e [0, max{f0}] be a threshold. The variable t could also 
stand, in increasing order of complexity, for an interval, a subset, or 
even the intersection of multivariate subsets, as well as labelled 
classes. Obviously this rapidly complicates things but does address 
the task of image classification and labelling (Campbell 1987) . At any 
level A consider the regionalization F = {x .: f(x . ) > 2^t}, i.e. 
the set of all super-threshold cells (De Cola 1989). >X

This image segmentation creates a list of disjoint and unconnected 
regions {E , : k = 1,..., n(A,t)}, where n(A,t) is the number of such 
regions. Each region E can be characterized at least by its location, 
size (number of cells), and perimeter. We may store this list either 
in its entirety or, by the use of dynamic variables, in bins containing 
the above descriptive information. The number, sizes and perimeters of 
these regions can be used to compute the fractal dimension D(A,t) as 
well as the Pareto scale parameter a(A,t) for the layer A, both of 
which can be expected to be a declining function of t (Lovejoy and 
Schertzer 1988). From the point of view of memory considerations, it 
should be noted that in general 3^n(A,t)/at^ < 0, i.e. the number of 
regions tends to a maximum for some midrange value of t (roughly that 
value of t for which p(x^ e F ) = 1/4 (De Cola 1989)). This bottom- 
up approach yields regions whi6n are explicitly a function of 
threshold, of layer, and of such sensing characteristics as resolution, 
so that we may examine the extent to which regional description and 
appearance reflects these characteristics. Note therefore that we may 
explicitly examine resolution effects both as artifact and as 
explanatory variable.
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An example of the multi-scale imaging proposed here is shown in Figure 
1, which displays results of a random walk simulation of 1000 steps on 
a 32^ torus. Shown in Id) are all cells visited at least t = 2 times, 
in Ic) all 2x2 cells visited at least 2 2 «2 = 8 times, etc. For this 
experiment D(t=2) = 1.41. It is helpful to think of each of these 
figures as an image in itself and not a "defocusing", etc. of some 
"better" resolution data. Sometimes we are interested in forests, 
sometimes in trees, still other times in leaves. Each layer tells us 
something about the process at that scale, characterized by fractal and 
size distribution parameters, and each threshold generates different 
statistical characterizations.

Another example of this approach, this time from empirical research, is 
shown in Figure 2. Figure 2a) presents all of the URBAN-classified 
(31.81 m)^ pixels from a from a 2048 -pixel Landsat image of Northwest 
Vermont (De Cola in review). Figure 2b) (at the scale of 2a)) locates 
all level-0 regions of size > 15 pixels. But another way of looking at 
this information is shown in 2c), all level-4 regions; i.e. all 
clusters of 2 = 16-sided cells in the study region. (Note that t — 
URBAN is not a threshold but an imputed land use; nominal values 
require a form of aggregation different from simple summing (De Cola 
1989). This aggregation process reduced the number of regions from the 
39,000 of the level-0 image to a manageable 325 in the level-4 image. 
These regions were then used to estimate the populations of "towns" in 
Franklin County VT, with results that were more reliable than those 
derived from the use of level-0 single-pixel regions (De Cola 1988 and 
see Tobler 1969).

So much for a "bottom-up" approach; next we turn to the recursive 
subdivision of the highest cell at level L. Each layer L-A consists of 
cells representing locations x which can be described in terms of such 
parameters as D(A,t)x , where the subscript implies locational 
specificity within the layer. This technique applies as well to Pareto 
regional size distribution statistics, to the size of the largest 
region in cell x, etc. Although these parameters can be presented in 
tables and plots, perhaps the most interesting way of displaying them 
is as maps. Figure 2d), for example, is a map of the fractal dimension 
of URBAN pixels from the Vermont study. The scene has been divided 
into (2-*)^ = 64 cells, bringing the analysis down to the A = 11 - 3 = 8 
level. The fractal dimension D(8,URBAN) X is represented by the height 
of each point. Lack of variation in Dx over space would be a necessary 
indicator of texture.

The data model presented here is obviously extremely flexible, allowing 
the scientist 1) to move among scales from layer to layer, 2) to 
explore the effects of varying threshold, and 3) to roam spatially 
within layers from cell to cell. As such, it affords ready access to 
parameters for the scale and location examined, as well as access to 
images at lower levels and maps at higher. The key is obviously the 
cell, which is not only the constituent of a region built up from below 
but also the location of spatial information for a window of subdivided 
space. For example, in the example above, the URBAN spectral 
classification was determined at level 0, while the identification of 
actual "urban" features was made at level 4, and the exploration of 
spatial variation in URBAN fractal dimension was made at level 8. The 
difference between the urban names here is intended explicitly to 
recognize that URBAN is a pixel group operationally defined by the 
specification of a spectral classification process, while "urban" is a 
word I have chosen to denote level 4 regions with a specific spatial 
morphology (connectedness, size, disjointedness, and form).
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Figure 1. Random walk simulation with first 4 aggregation levels.
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All urban clusle b) Ui ban clusters > 15 pixels
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c) Level 4 urban cluste

d) URBAN FRACTAL DIMENSION FOR NVV VERMONT WINDOWS

Figure 2. Images and a map of URBAN pixels from a Landsat scene for 
Northwest Vermont.
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PROSPECT

Admittedly, it is no easy feat to translate the above requirements into 
a full-blown geographical analysis system for the study of events, 
interactions, and regions in space and time, but we are moving in this 
direction. At least three kinds of developments are cause for 
optimism. First, data structures, such as quadtrees and iterated 
function systems (Barnesley 1988), as well as data hardware, such as 
faster and more capacious chips as well CD-ROM (Lambert and Ropiequet 
1986) give us powerful command over and broad access to large numbers 
of measurements. Second, sheer improvements in computational speed are 
always welcome, but probably the greatest advances will come from 
parallel and connectionist architectures and algorithms (Toffoli 1987 
and Mower 1988) . There seems no reason why a parallelist approach to 
spatial data (Bhaskar, Rosenfeld and Wu 1988) cannot be adopted to the 
multidimensional analysis of digitized spectral data as well. Finally, 
multifractal approaches to real world phenomena offer new ways of 
integrating multisource data in ways that make analysts less burdened 
by hitherto supposedly incompatible resolutions. While I am not 
optimistic about the near-term integration of vector (D = 1) and raster 
(D = 2) data, I am excited about the fact that scientific research can 
only flourish in these tumultuous times.
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