
Object-Oriented Modeling in CIS:
Inheritance and Propagation*

Max J. Egenhofer
Andrew U. Frank

National Center for Geographic Information and Analysis
and

Department of Surveying Engineering
University of Maine

Orono, ME 04469, USA
MAXOMECANl.bitnet

FRANKQMECANl.bitnet

Abstract

The relational data model has proven to be too restrictive for applications with spatial data,
such as Geographic Information Systems (GIS). In particular, the absence of techniques to form
complex objects and represent spatial objects at different abstraction levels makes it difficult to
model geographic situations properly The object-oriented approach, which has been recently
promoted for similar engineering applications, such as CAD/CAM, VLSI design, or molecular
models in chemistry, seems to overcome some of the deficiencies By incorporating the abstrac
tion mechanisms ycnt i-nlization and (lyyiryafion, the data model gets richer and more powerful
than the relational model, and the application designer is given more and better tools to model
complex situations.

Both generalization and aggregation involve the derivation of attribute values at different
levels of detail and abstraction. Two methods for the derivation of properties are introduced' (1)
mix nt<inr< describing properties and methods of subclasses in is_a hierarchies, and (2) IIIU/HI-
(/tihdii deriving properties in part_of hierarchies While inheritance acts in a top-down fashion
along the generalization hierarchy, propagation can derive values from parts to the aggregates
(bottom-up). Frequently aggregate functions, such as SUM, MIN, or MAX are involved to pass
on properties of composed objects to its parts.

1 Introduction

The relational model upon which most current GIS software systems are built has been ac
knowledged as an insufficient model for applications that deal with spatial data [Frank 1984]
[Harder 1985] [Frank 1988b] The application of object-oriented techniques for the design of
future Geographic Information Systems has been proposed on several stages, e g., such as
message-passing programing language [Kjerne 1986], object-oriented database management sys
tems [Egenhofer 1987], and object-oriented software engineering techniques [Egenhofer 1989a]
[Egenhofer 1989b] This paper focuses on advanced object-oriented techniques to model the
dependencies of properties, operations, and values in generalization- and aggregation hierar
chies These methods are ideal for applications with spatial data, because they enforce natural
phenomena, such as the fact that the area of a subdivision is exactly the sum of the areas of
the partitions.

'This research was partially funded by grants from NSF under No 1ST 86-09123 and Digital Equipment
Corporation The support from NSF for the NCGIA under grant number SES 88-10917 is gratefully acknowledged

588

Barrera and Buchmann introduced the derivation of attributes in hierarchies of spatial inclu
sion and aggregates to geographic applications [Barrera 1981]. Since then, many controverse dis
cussions have been among researchers in the areas of object-oriented modeling, object-oriented
database management systems [Dittrich 1986b] [Dittrich 1988], and object-oriented program
ming languages [OOPSLA 1986a] [OOPSLA 1986b] about various types of inheritance, such as
behavior vs. abstract implementation, single vs. multiple, automatic vs. on-demand, and upwards
vs. downwards.

The paper begins with an overview of the principles of object-oriented modeling. Examples of
CIS applications show the benefits of the abstraction mechanisms classification, generalization,
association, and aggregation, for spatial modeling. There are two methods for relating properties
from one object to another. In section 3 the data model is extended by iiihrrHdim linking
properties of objects in a generalization hierarchy. In section 4 prodigal ion is introduced linking
the values of objects that are linked by association or aggregation. The separation of these
two different methods is important, therefore, clearly distinct terms are chosen. Propagation
is sometimes called in the literature upward inheritance [Barrera 1981] [Brodie 1984a], but it
should become clear from this paper that there exist two different concepts which must not be
mixed. The paper concludes that inheritance and propagation are important for CIS applications
and need efficient support from object-oriented programming languages.

2 Object-Oriented Model

This chapter introduces the notation of objects and the abstraction tools available to deal with
them. A definition of object-orientation is that an entity of whatever complexity and structure
can be represented by exactly one object [Dittrich 1986a] No artificial decomposition into sim
pler parts should be necessary due to technical restrictions, e.g., normalization rules [Codd 1972].
The object-oriented data model is built on the four basic concepts of abstraction [Brodie 1984b]:
classification, generalization, association, and aggregation.

2.1 Classification

Classification is the mapping of several objects (instances) to a common class. The word object
is used for a single occurrence (instantiation) of data describing something that has some indi
viduality and some observable behavior The terms objrcl type, soil, type, abstract data typ<,
or inodiil(refer to types of objects, depending on the context. In the object-oriented approach,
every object is an instance of a class. A type characterizes the behavior of its instances by
describing the operators that are the only means to manipulate those objects [O'Brien 1986].
All objects that belong to the same class are described by the same properties and have the
same operations. Classification is often referred to as the i list n nee of relationship because the
individuals are instance-*< of the corresponding class

For example, the CIS model for a town may include the classes irsidt nee, cennniercial
btiildinej, and street A single instance, such as the residence with the address '30 Grove Street'
is an instance of the class residence. Operations and properties are assigned to object types,
so for instance the class residence may have the properties number of b((Irooms and (id dress
which are specific for all residences

2.2 Generalization

Generalization groups several classes of objects, which have some properties and operations in
common, to a more general superclass [Dahl 1966] [Goldberg 1983]. The terms sulx-lnss and
Mf/w irluvs characterize generalization and refer to object types which are related by an is-»
relation. The converse relation of superclass, the s\ib<l(if.x, describes a specialization of the
superclass. For example, the object type residence is a btnldiny; resident is a subclass of

589

building, while building is its superclass 1 .
Generalization may have an arbitrary number of levels in which a subclass has the role of

a superclass for another, more specific class. The bvildiiiy/irsidr /?,rr-generalization can be
extended with the class rural n*id(.nr.c. While re side na is a subclass of buildiny, it is at the
same time a superclass for runil n */,d< nri.s.

It is important to note that superclass and subclass are abstractions for the same object,
and do not describe two different objects. The residence with the address '30 Grove Street',
for example, is at the same time an instance of the class /r.w/cnrr as well as of its superclass
buildiiHj.

2.3 Association

Association is a form of abstraction in which a relationship between similar objects is considered
a higher level set object [Brodie 1984b]. The term M/ is used to describe the association, and the
associated objects are called ni< nibrr*. Hence, this abstraction is referred to as the me nibi r-of
relation, but is also often called grouping or partitioning. For example, a subdivision divides
one parcel into several parcels.

The details of a member object are suppressed and properties of the set object are empha
sized. An instance of a set object can be decomposed into a set of instances of the member
object. Association applied to objects (members) produces a set data structure. An operation
over a set consists of one operation repeated for each member of the set, e.g., a FOR EACH
loop structure, found in some modern programming languages, such as CLU [Liskov 1981].

For example, the city Orono and the building with the address '30 Grove Street' are asso
ciated by the relationship in^idt

2.4 Aggregation

A similar abstraction mechanism to association is aggregation which models composed objects,
i.e., objects which consist of several other objects [Smith 1977]. The term compo^i! object
describes the higher-level object, while .tubpart or component refers to the parts of the com-
posit object The relationship among the components and the composit object is the parl-of
relationship, and the converse relationship is ron t*i<*tt<-of For example, the class biiildiny is an
aggregate of all tcn/Vs, window^, door*, and roofs which are part of it.

When considering the aggregate, details of the constituent objects are suppressed. Every in
stance of an aggregate object can be decomposed into instances of the component objects. Each
part keeps its own functionality Operations of aggregates are not compatible with operations
on parts.

Aggregation applied to objects (components) produces an aggregate (or record) type data
structure. An operation over an aggregate consists of a fixed number of different operations
in sequence or in parallel, one for each component Hence, aggregation relates to sequence or
parallel control structures

3 Inheritance

In generalization hierarchies, the properties and methods of the subclasses depend upon the
structure and properties of the superclass(es). Inheritance is a tool to define a class in terms of
one or more other, more general classes [Dahl 1966] Properties which are common for superclass
and subclasses are defined only once—with the superclass—and inherited by all objects of the
subclass, but subclasses can have additional, specific properties and operations which are not
shared by the superclass. Inheritance is the transitive transmission of the properties from one

'Frequently, the terms jiarnil and child are used for superclass and subclass, respectively Though this
terminology is helpful to clarify the dependency of subclasses from superclasses, it is not accurate with respect
to the abstraction, because the relationship between parent and child is not M-H

590

superclass to all related subclasses, and to their subclasses, etc. This concept is very powerful,
because it reduces information redundancy [Woelk 1987] and maintains integrity. Modularity
and consistency are supported since essential properties of an object are defined once and are
inherited in all relationships in which it takes part.

Operations of the superclass are applicable to all objects of the subclass because each object
of the subclass is at the same time an object of the superclass; however, operations which are
specifically defined for a subclass are not compatible with superclass objects.

3.1 Single Inheritance

The inheritance relation can be restricted to form a strict hierarchy and is then often referred to
as A//K//I inheritance. Single inheritance requires that each class has at most a single immediate
superclass. This restriction implies that each subclass belongs only to a single hierarchy group
and one class cannot be part of several distinct hierarchies.

Figure 1 shows an example of inheritance along a generalization hierarchy. Rrsiili nr(is
the general superclass and <ily rt oidniff and rum I rr.sidfticr are the specific subclasses. All
properties of the class n ^id< in (are inherited to the two subclasses. For example, n mile nlNaiiK
is a property of the class n ^/d< nff which applies to all nly n f-idf IK r.s and rural 11 ftidt nn ft,
and hence is inherited to them Likewise, all operations defined upon rrWr n<(, such as woriixj
tii/r> a nsid<nc(, are applicable both to > ity rcf-nhnrff- and rural rrwdf nets. On the other
hand, the operations defined specifically for a subclass are not applicable for objects of the
superclasses For example, nr rlSuhirauStni) is a property which applies only to city residences

The common representation of hierarchies as trees is used for strict inheritance with the most
general superclass at the top, and the most specific subclasses at the bottom. Each class is
modelled as a node, while the ?s_r/ relation between two nodes is visualized as a vector pointing
from the node of the superclass to the node of the subclass. The direction of the vector is to
emphasize the top-down concept of inheritance—from the general to the specific.

city residence rural residence

Figure T An example of inheritance along a generalization hierarchy with the more general class
at the top and more specialized classes at the bottom

The transitive property of inheritance implies that any property is passed not only from the
superclass to the immediate subclasses, but also to their sub-subclasses, etc. Figure 2 shows
a more complex generalization hierarchy with 3 levels of classes. The properties of a biiildiny,
such as fiddn A-A- and nwnrr, are inherited to the subclass irstdam, and also transitively to the
sub-subclasses rural iwdi iif(and <itu n.<>idfii<f.

591

city residence rural residence

Figure 2. Properties are transitively inherited from a superclass to all its subclasses, the
sub-subclasses, etc

3 2 Formalism

The inheritance relation can be described formally in First Order Predicate Calculus. First
Order Predicate Calculus is a language based upon a set of primitive symbols composed of (1)
variables, constants, and predicate symbols; (2) logical connectors NOT, AND, OR, implication,
and equivalence; (3) quantifiers FOR ALL and EXISTS; and (4) parentheses. A combination
of constants and variables (called predicates), linked with the logical connectors, is called a
well-formed formula (n'ff)

Subsequently, constants (or facts) are capitalized, while variable names are lower cased.
Facts and rules (axioms) will be marked by an asterisk (*) to distinguish from inquiries about
predicates (hypothesis). Each property of a class is expressed as a predicate of the form />
(iltif-x. pro/x rli/) Generalization is described as the /.s_r/-predicate of the form /*_« (.inbclm**.
MI/W nla^^) The following facts describe the model depicted in figure 2.

*p (Building, Address).
*p (Building, Owner).
*p (Residence, Resident).

*is_a (RuralResidence, Residence).
*is_a (CityResidence, Residence).
*is_a (Residence, Building).

Inheritance is then defined by a predicate pro/x rtu-x which recursively derives the properties
associated with a class and all its superclasses.

*properties (class, property) IF p (class, property).
*properties (class, property) IF is_a (class, superclass),

properties (superclass, property).

All properties of the class r ?/<//?< <*!<!(na can then be determined with the predicate

properties (CityResidence, prop).

which is fulfilled with the following values for the variable prop'

prop = Resident
prop = Address
prop = Ouner

Likewise, it can be determined to which classes a certain property belongs, e.g.,

property (class, Resident).

yields

592

class = Residence
class = RuralResidence
class = CityResidence

This example showed the need for the definition of properties only once, that is with the most
general superclass All dependent properties are derived with the transitivity rule.

3.3 Multiple Inheritance

The structure of a strict hierarchy is an idealized model and fails frequently when applied to
real world data Most 'hierarchies' have at least a few non-hierarchical exceptions in which one
subclass has more than a single, direct superclass. Very often more than one hierarchy of classes
exists which is used concurrently Again, the one-superclass-per-subclass rule is violated. Thus,
pure hierarchies are not always the adequate structure for inheritance. Instead, the concept
of nniltipli inhi i il<nx ([Cardelli 1984] permits to pass operations or properties from several
higher-level classes to another class This structure is not hierarchical, because—in terms of the
parent-child relation—one child can have several parents. Figure 3 shows the simplest case of
multiple inheritance with a subclass inheriting properties from two distinct superclasses

superclass 1 superclass 2

Figure 3' Multiple Inheritance: The properties of 2 distinct superclasses are passed to a common
subclass

An example from geography shows how multiple inheritance combines often two distinct
hierarchies One hierarchy is determined by the separation of rniijirntl and ntitural transporta
tion links, whereas the other hierarchy distinghuishes watt r bodn <; Classes with properties
from both hierarchies are (Inmixl^, that are iirtifinal Ii(in*porld1ion hid:': and n<dl< r bodi<f>,
and inivi(jdbl< n'r< r\ that are i IVH-H and ndluinl trnii.?poridiioii links Other classes, such as
hidlnrdii or pond belong only to one hierarchy (Figure 4).

Figure 4: An example of multiple inheritance

3.4 Inheritance in CIS

Inheritance plays an important role for the clear and concise definition and implementation of
very large software systems,such as Geographic Information Systems. The tools to implement
such a system should be at least as powerful as the tools used for the conceptual model.

The advantages are similar to the ones of semantic models: Complex situations can be
described concisely, consistency can be achieved by avoiding redundancy; and systems can be

593

maintained easier. A specific problem of the implementation of a CIS is the coexistence of a
number of fairly complex tasks, such as the treatment of geometry, graphical representation,
concurrent sharing of data, management of history and versions, etc.

Inheritance can be used as a software engineering design tool to describe the structure and
properties of a CIS. One part of an application model is the definition of a set of classes as
the abstraction of objects with common properties. Traditionally, for each class the appropriate
operations and relationships must be defined, including operations which combine objects of
different classes For example, the class btiildiny has the operation ii\f-nlt which checks whether
a building is located inside a parcel Since insult applies also to many other objects, such as
rilics with respect to fountir.i, many similar, often highly redundant operations are defined and
implemented which make modifications difficult and yield frequently inconsistencies.

The application of inheritance overcomes these problems. By the definition of a general
superclass for each specific concept, common properties may be defined in a single high-level
class and inherited to the classes of the CIS application. Such a framework may consist of
general superclasses, such as ^palial, graphical, taupoial, and db-prrshit nt.

For example, the superclass ^palml defines the geometric properties, such as location, spatial
relationships, and spatial operators. A class in the user model can be defined as a subclass of
spnlial inheriting all its properties For example, the class buildiny is a spatial object. liiiildnif/
can be described as the subclass of ^pnluil inheriting all spatial properties, such as the operation
nifiidt (Figure 5)

Figure 5. Creating a spatial class binldini) by inheriting the spatial properties from a superclass

Other properties can be defined in a similar way. For example, database properties, such
as persistency, multi-user access, and transaction control, can be inherited from a superclass
db-l>(rsis/f nt. The general database operations, such as store, delete, retrieve, and modify, are
defined for the class db-pr rvstt nl and passed to the specific object classes. If the class buildiny
is a db-persistent class, then buildings can be stored, deleted, retrieved, and modified.

It is obvious that this type of modeling requires multiple inheritance [Frank 1988a]. A
class can have a multitude of diverse properties to be inherited. Important properties for
GISs are dh-jMrmlfiit providing database bahavior, spa tut I inheriting a common geometric
concept, (/rtipht((il providing graphical display, and icnipoml for the description of history of
data [Egenhofer 1988] Figure 6 shows the creation of the class building with two properties:
fipnlidl and db-pi rs/.s/f ni

Figure 6' Creating a class Inuld/ng, the instances of which being both spatial and persistent.

594

4 Propagation

Aggregation and association show significant similarities, among them the ability to combine
multiple instances to a combined instance The dependencies of values along these hierarchies
and their derivation is the subject of propagation. Subsequently, only aggregation hierarchies
will be considered, but the same concepts apply to association hierarchies as well.

In aggregation hierarchies, two types of property values occur: (1) values which are specif
ically owned by the composit object and distinct from those of their components; (2) values
which depend upon values of the properties of all components and must be derived from them.
In contrast to less powerful models which require redundant storage of such values, the object-
oriented model derives these dependencies This model is superior because it enforces integrity
by constraints The population of a county, for example, is the sum of the population of all
related settlements; therefore, the value for the property population of a county is derived by
adding all values of the property population owned by the »(tllcmt ills.

4.1 Concept

The mechanisms to describe such dependencies and ways to derive values is called propayation.
It supports complex objects which do not own independent data and is based upon the concept
that values are stored only once, i.e , for the properties of the components, and then propa
gated to the properties of the composit objects. This model guarantees consistency, because
the dependent values of the aggregate are derived and need not be updated every time the
components are changed

Propagation becomes trivial if the 'complex' object happens to be composed of a single part
and the value of the aggregate refers to a single value of the part.

If the values of more than one object contribute to the derived value, the combination of
the values must be described by an aggregation function. Aggregation functions combine the
values of one or several properties of the components to a single value. This value reduces the
amount of detail available for a complex object.

It may determine the sum or union of values of the components, or define a specific, out
standing part, such as the greatest, heaviest, or conversely, the smallest or lightest one. On the
other hand, it may be representative, such as the average or weighted average of the values of
a specific property.

Common operations for the derivation of values are suw, set union, minimum, ina.rimun>,
toiinl, ar< ra<j(, and win/lit td arrrayc For example, the population of the biggest city in a
county is the maximum of the populations of all its cities; the area of a state is the sum of the
areas of all its counties; the population density of the state is the average of the population
density of its counties weighted by the county areas.

4.2 Propagation in GIS

In GIS, for example, a large number of attribute values at one level of abstraction depends upon
values from another level. When combining local and regional data, this concept must be used
to model the dependencies among data of different levels of resolution [Egenhofer 1986].

4.3 Formalism

The formalism of propagation can be described concisely in predicate calculus. The following
simplified facts describe a county (Penobscot) as an aggregate of two settlements (Bangor,
Orono) with the property *rHlrn>(nlPopulation.

*p (Orono, SettlementPopulation, 10,000).
*p (Bangor, SettlementPopulation, 50,000).
*p (Orono, PartOf, Penobscot).
*p (Bangor, PartOf, Penobscot).

595

The population of the county is a value which is propagated from the values of the population
of the associated settlements.

The population of a county is the sum of the population of the settlements. This dependency
is expressed by the following rule, meaning the population of a specific county is the sum of the
population of all settlements which are part of it.

*propagates (PartOf, SettlementPopulation, CountyPopulation, BySumming).

The generic rule for propagation is the following predicate. It describes the value of the property
of an aggregate in terms of the values of the components using a specific aggregation function.

*P (aggregateClass, aggregateProperty, aggregateValue) IF
propagates (relation, componentProperty, aggregateProperty, operation)
p (componentClass, relation, aggregateClass),
p (componentClass, componentProperty, componentValue),
p (operation, componentValue, aggregateValue).

For example, the value of the property coiiiilyPoinilatinn is then evaluated with

p (County, CountyPopulation, x).

and results in

x = 60,000

Propagation guarantees consistency because data is only stored once and derived from there.
Updates underlie the common rules for updates of views [Dayal 1978], i e., no derived properties
can be updated explicitly, but only the fundamental properties. For example, it is not allowed to
update the population of the Penobscot county by asssigning the value 65,000 to the property
(otinlt/PoiHiltihoii if the town population of Orono grows by 5,000. Instead, the population
of the settlements must be modified, e.g., *p (Orono, SettlementPopulation, 15,000),
which implicitly updates the CountyPopulation.

5 Conclusion

The object-oriented model has powerful tools for data structuring, such as classification, general
ization, aggregation, and association In order to model dependencies of properties, operations,
and values in hierarchies of generalized and aggregated objects, the concepts of inheritance
and propagation are introduced By using these techniques, complex situations in Geographic
Information Systems can be modeled more naturally than with relational tables.

Three important conceptual differences exist between inheritance and propagation: (1) In
heritance is defined in generalization (is_a) hierarchies, while propagation acts in aggregation
(part-of) or association (member_of) hierarchies. (2) Inheritance describes properties and oper
ations, while propagation derives values of properties. (3) Inheritance is a top-down approach,
inheriting from the more general to the more detailed class. Propagation on the other hand acts
bottom-up.

Implementations need efficient support for these techniques For example, programming
languages must include object-oriented language constructs to model generalization and inheri
tance; to loop over aggregation parts; and to defined propagation.

6 Acknowledgement

Thanks to Renato Barrera and Alex Buchmann for many stimulating discussions which con
tributed to our understanding of object-orientation and propagation.

596

References

[Barrera 1981] R Barrera and A Buchmann Schema Definition and Query Language for a
Geographical Database System IEEE Transactions on Computer Architecture: Pat
tern Analysis and Image Database Management, 11, 1981.

[Brodie 1984a] M L Brodie and D Ridjanovic On the Design and Specification of Database
Transactions In. M.L Brodie et al., editors, On Conceptual Modelling, Springer
Verlag, New York, NY, 1984

[Brodie 1984b] M.L Brodie On the Development of Data Models. In: M L. Brodie et al.,
editors, On Conceptual Modelling, Springer Verlag, New York, NY, 1984

[Cardelli 1984] L Cardelli A Semantics of Multiple Inheritance. In G. Kahn et al., editors,
Semantics of Data Types, Springer Verlag, New York, NY, 1984

[Codd 1972] E.F. Codd Further Normalization of the Data Base Relational Model. In:
R. Rustin, editor, Data Base Systems, Prentice-Hall, Englewood Cliffs, NJ, 1972.

[Dahl 1966] 0 -J Dahl and K. Nygaard SIMULA—An Algol-based Simulation Language. Com
munications of the ACM, 9(9), September 1966

[Dayal 1978] U Dayal and P Bernstein On the Updatability of Relational Views. In: S. Bing
Yao, editor, Fourth International Conference on Very Large Data Bases, West-Berlin,
Germany, 1978

[Dittrich 1986a] K Dittnch Object-Oriented Systems The Notation and The Issues. In-
K. Dittrich and U Dayal, editors, International Workshop in Object-Oriented Database
Systems, Pacific Grove, CA, 1986.

[Dittrich 1986b] K Dittrich and U Dayal, editors Proceedings of the International Work
shop in Object-Oriented Database Systems, Pacific Grove, CA. Springer-Verlag, New
York, NY, 1986.

[Dittrich 1988] K Dittrich, editor Advances in Object-Oriented Database Systems-
Proceedings of the 2nd International Workshop on Object-Oriented Database Systems,
Bad Miinster am Stein-Ebernburg, F R Germany. Springer-Verlag, New York, NY,
September 1988 Lecture Notes in Computer Science, Vol. 334.

[Egenhofer 1986] M. Egenhofer and A Frank Connection between Local and Regional: Ad
ditional 'Intelligence' Needed. In' FIG XVIII. International Congress of Surveyors,
Commission 3, Land Information Systems, Toronto, Ontario, Canada, 1986.

[Egenhofer 1987] M. Egenhofer and A. Frank Object-Oriented Databases: Database Require
ments for GIS In International Geographic Information Systems Symposium: The
Research Agenda, Crystal City, VA, November 1987.

[Egenhofer 1988] M Egenhofer Graphical Representation of Spatial Objects: An Object-
Oriented View. Technical Report 83, Surveying Engineering Program, University of
Maine, Orono, ME, July 1988.

[Egenhofer 1989a] M. Egenhofer and A. Frank. PANDA: An Extensible DBMS Supporting
Object-Oriented Software Techniques. In: Database Systems in Office, Engineering,
and Scientific Environment, Springer-Verlag, New York, NY, March 1989.

[Egenhofer 1989b] M. Egenhofer and A. Frank. Why Object-Oriented Software Engineering
Techniques are Necessary for GIS. In- International Geographic Information Systems
(IGIS) Symposium, Baltimore, MD, March 1989

597

[Frank 1984] A Frank Requirements for Database Systems Suitable to Manage Large Spatial
Databases In International Symposium on Spatial Data Handling, Zurich, Switzer
land, August 1984

[Frank 1988a] A Frank Multiple Inheritance and Genericity for the Integration of a Database
Management System in an Object-Oriented Approach. In: K.R. Dittrich, editor, Ad
vances in Object-Oriented Database Systems—Proceedings of the 2nd International
Workshop on Object-Oriented Database Systems, Bad Miinster am Stein-Ebernburg,
F R. Germany, Springer-Verlag, New York, I\IY, September 1988. Lecture Notes in
Computer Science, Vol 334

[Frank 1988b] A. Frank Requirements for a Database Management System for a GIS. Pho-
togrammetric Engineering & Remote Sensing, 54(11), November 1988.

[Goldberg 1983] A. Goldberg and D. Robson. Smalltalk-80. Addison-Wesley Publishing Com
pany, 1983

[Harder 1985] T. Harder and A. Reuter. Architecture of Database Systems for Non-Standard
Applications, (in German) In: A. Blaser and P. Pistor, editors, Database Systems
in Office, Engineering, and Scientific Environment, Springer Verlag, New York, NY,
March 1985. Lecture Notes in Computer Science, Vol. 94.

[Kjerne 1986] D Kjerne and K J. Dueker Modeling Cadastral Spatial Relationships Using an
Object-Oriented Language, liv D. Marble, editor, Second International Symposium
on Spatial Data Handling, Seattle, WA, 1986.

[Liskov 1981] B. Liskov et al. CLU Reference. Lecture Notes in Computer Science, Springer
Verlag, New York, NY, 1981.

[O'Brien 1986] P O'Brien et al Persistent and Shared Objects in Trellis/Owl. In: K. Dittrich
and U. Dayal, editors, International Workshop in Object-Oriented Database Systems,
Pacific Grove, CA, 1986.

[OOPSLA 1986a] OOPSLA '86—Object-Oriented Programming Systems, Languages, and Ap
plications, Conference Proceedings Portland, OR, September 1986.

[OOPSLA 1986b] OOPSLA '87—Object-Oriented Programming Systems, Languages, and Ap
plications, Conference Proceedings. Orlando, FL, October 1986.

[Smith 1977] J M. Smith and D C P. Smith. Database Abstractions: Aggregation. Communi
cations of the ACM, 20(6), June 1977

[Woelk 1987] D. Woelk and W. Kim. Multimedia Information Management in an Object-
Oriented Database System. In- P. Stocker and W. Kent, editors, 13th VLDB confer
ence, Brighton, England, 1987

598

