
Performance Testing of Gridcell-Based GIS

Sherry E. Amundson
University of Hawaii at Hilo

Hilo, HI 96720

ABSTRACT

The advent of the non-commercial microcomputer-based 
gridcell CIS brings a host of first-time users who need to 
know what to expect in terms of processing time. This implies 
a need for more comprehensive performance evaluation than has 
been done on GIS in the past. The present study demonstrates 
the use of the formal performance evaluation methodology in 
the micro-computer-based setting. It measures the performance 
of four GIS functions of the OSU MAP-for-the-PC software under 
a number of varying workload and operating conditions. 
Commercial performance profiling software is used to monitor 
program performance internally.

INTRODUCTION

Several non-commercial PC-based GIS, initially introduced 
as teaching tools or systems for small government projects, 
have recently been made available at a modest price. Almost 
all of them organize data using a gridcell structure.

A thorough evaluation of the performance of these systems 
-- in terms of processing time and disk utilization -- is 

needed by a potentially large set of first-time users with a 
potentially diverse set of requirements. Users need to know 
what to expect. (Should they wait at the terminal for their 
results? Should they go out for coffee and come back later? 
Should they let the program run overnight?)

Processing time varies with the size and complexity of the 
input data, and with variations in the computing environment. 
Therefore an assessment of system performance would have to 
predict processing time under a variety of conditions. 
Installation managers need performance information when they 
configure hardware systems or design data sets. Conversely 
it may be necessary to plan a GIS application to fit within 
existing hardware or data constraints.

The performance assessment of commercial GIS has 
traditionally taken the form of application-specific benchmark 
tests commissioned by individual user agencies. For the sake 
of economy, measurements are made on only those GIS functions 
that the agency intends to use most frequently, and the 
functions are measured using a limited number of real-world 
data sets that represent typical workloads for the 
installation or extremely heavy 'worst-case' conditions. The 
test designer does not have access to the source code because 
it is proprietary. Likewise the designer owns the test 
design, and the results are kept confidential.

798



Application-specific testing is inadequate to evaluate non 
commercial GIS; a diverse set of users needs to refer to the 
same set of results. All GIS functions in the function set 
must be evaluated. More important, the testing methodology 
must enable users to predict performance levels under a wide 
range of data and operating conditions.

Performance Evaluation Methods
A formal evaluation methodology is used in computer science 

to analyze and improve computer system performance. It is 
comprised of a set of quantitative procedures that measure 
performance in terms of time spent and space utilized in a 
system. In common practice performance times are measured 
with internal probes while an application runs on the system. 
The probes (usually calls to the system clock) may be placed 
selectively within the program to time specific sections of 
the code and discover where the system "spends its time".

Performance evaluation studies are applied to entire 
computer systems, or hardware and software complexes. The 
interaction between software instructions and the way they are 
executed in the hardware is system dependent; it is commonly 
understood that a program cannot be measured outside the 
context of the computing environment. Program A might run 
more efficiently than Program B in one environment and less 
efficiently than B in another environment (Ferrari, 1978).

In a similar fashion the performance of a system may be 
expected to vary with the application. In this context the 
term "application" represents a specific workload (in the form 
of a specific set of tasks and a given data set) that a system 
is to process. A single evaluation project consists of a 
number of measured runs which process controlled versions of 
a synthetic workload. The workload is designed to be modified 
according to specific parameters; individual performance- 
influencing factors may be isolated and modified while other 
characteristics are held constant (DeWitt, 1985; Heidelberger, 
1984). This technique can support a full factorial design 
which measures performance under all combinations of selected 
factors in an n-tuple structure (Ferrari, 1978).

The complete set of runs tests the strength of the factors 
as performance predictors. The formulation of test objectives 
should be based on extensive knowledge of how the system 
works. Without prior familiarity with the internal 
organization of the system, an evaluator would not know which 
facets of the system to test (Heidelberger, 1984).

Purpose of the Study
Compared to the large commercial GIS, the new non 

commercial microcomputer-based GIS are uniquely 'testable'. 
They can be monitored internally because the source code is 
readily available. An examination of the code also reveals 
possible performance-influencing factors. There is no reason 
to limit testing to specific applications or to use only 
'typical' data loads, and test results can be made available 
to the entire user community. In addition, the new PC-based 
systems use a gridcell structure, and the regularity of 
gridcell processes would indicate important and highly 
reliable predictive factors in the data load.

799



This paper demonstrates the use of performance evaluation 
techniques (in the form of synthetic data set design, internal 
monitoring of the code, and the use of a factorial testing 
scheme) in the setting of the non-commercial PC-based CIS. 
Tests are conducted on one of the Ohio State University 
versions of the Map Analysis Package, OSU MAP-for-the-PC. 
This particular GIS was selected because the source code was 
already in hand. A method for testing the speed of individual 
GIS functions is introduced and applied to four of the 
functions.

Measurable Factors vs. Functional Factors
"Performance" refers to how well a system works. It is 

based on measurable factors within the system (in terms of the 
utilization of system resources) and on functional factors 
such as ease of use, correctness, availability, reliability, 
training, etc. (usually measured in terms of human resources). 
In both cases most resources are represented by some form of 
time expenditure. System resource expenditures might be 
expressed as throughput or turnaround time; human resource 
expenditures might be the time required for data collection 
and editing, or the time required to develop applications. 
Some functional factors cannot be measured at all; they are 
simply verifications that the system possesses specified 
features.

Literature about performance evaluation acknowledges that 
human resource expenditures are at least as important as 
computer resource expenditures in evaluating system 
performance (Stonebraker, 1985). In fact these elements do 
assume a major role in application-specific GIS benchmark 
studies, because production schedules are called into play 
(Goodchild and Rizzo, 1986; Tomlinson, 1981; Greenlee et. al. , 
1986) . However the technical performance literature 
deliberately excludes the functional factors from formal study 
because they do not lend themselves to quantitative 
measurement (Heidelberger, 1984). If performance evaluation 
methodology is to be used to improve GIS tests, it is more 
likely to be in the arena of internal measurements of the 
system itself.

OSU MAP-FOR-THE-PC

Operating Environment
OSU MAP-for-the-PC runs on an IBM PC/XT or PC/AT or PS/,2 or 

equivalent machine, using the MS-DOS or PC-DOS operating 
system. The machine must have at least 512 KB of memory, a 
hard disk, and one floppy disk drive. 640 KB of memory is 
required if grids larger than 28,000 cells are to be used. 
An appropriate math co-processor (the 8087 for the PC/XT, the 
80287 for PC/AT-class machines or the 80387 for "386" machines 
such as the IBM PS/2 80) is optional but highly recommended, 
especially with the slower machines.

The microprocessor in the machine — the 8088 chip in the 
PC/XT, the 80286 chip in the PC/AT and the 80386 chip in the 
"386" machine -- determines its processing speed. The pace 
at which instructions are processed is measured in terms of

800



a steady beat supplied by a clock generator, which beats at 
4.77 MHz in the PC/XT, 6 to 20 MHz in the 80286-based 
machines, and 16 to 25 MHz in the 80386-based machines. 
Clearly the processing speed of a system has a strong 
influence on the performance of any CIS application.

Math co-processors may have a strong impact on the 
execution speed of programs because they vastly accelerate the 
processing of floating point operations. Co-processors are 
not essential to program execution, and their installation is 
optional. In OSU MAP-for-the-PC most mathematical operations 
are performed in integer arithmetic. However floating point 
operations are concentrated in the implementation of a few CIS 
functions, and users who need to call heavily on these 
functions may find that a co-processor is beneficial.

Ohio State provides two versions of OSU MAP-for-the-PC 
based on co-processor options. One version requires a math 
co-processor and the other version emulates a co-processor 
regardless of the hardware configuration. The emulation 
version detects the presence or absence of a co-processor and 
accesses the chip if it is present.

Program Structure
The central module of OSU MAP-for-the-PC is a large command 

interpreter. After it parses a user command it calls the 
appropriate subprogram to implement the spatial data handling 
function that has been requested and then writes the results 
to the database. The function-handling subprograms can be 
viewed as independent and unrelated spokes extending from the 
command interpreter "hub".

The gridcell structure simplifies processing because of its 
regular distribution of data points and because (for many CIS 
procedures) all cells must be examined in turn regardless of 
the cell value. In addition the region boundaries in OSU MAP- 
f or-the-PC must be identical for all the layers. This 
regularity in the data organization and the data handling 
processes implies that the number of cells in the grid has a 
strong influence on performance. It also suggests that the 
relationship between performance and the number of gridcells 
is linear.

TEST DESIGN

Functional Level Tests
According to Goodchild and Rizzo (1986) tests should be 

performed at the level of the spatial data handling function 
(i.e. they should measure the performance of entire functions) 
because it is at this level that different CIS packages must 
be compared. Because they lack a formal command language, 
the public domain microcomputer-based GIS operate at the level 
of the "atomic" function (polygon overlay, reclassification, 
etc.). In the present study each atomic function is 
subdivided into component segments at the program module 
level, which is a more detailed level than the one suggested 
by Goodchild and Rizzo. Modules are measured individually, 
and the measurements may be summed to find the total 
measurement for the function.

801



Performance-Influencing Factors
The performance-influencing factors were chosen to test 

simple but potentially strong relationships, with a minimum 
of interaction among the factors. Three factors were 
selected, one from the workload characteristics and two from 
the operating environment: the size of the grid, the presence 
or absence of a math co-processor, and the selection of the 
microcomputer itself.

The influence of the simple gridcell structure on 
performance has already been discussed. It is postulated that 
the volume of data in a given layer (i.e. the size of the 
grid) would exert an overwhelming influence on the execution 
speed of CIS functions that process each cell in turn.

The most influential factor in the operating environment 
appears to be the choice of the microcomputer. The PC/AT, 
with its 80286 microprocessor and its 8 MHz clock speed is 
reported to run almost 8 times as fast as the PC/XT with its 
8088 microprocessor and its 4.77 MHz clock speed. The 
presence or absence of a math co-processor was chosen as a 
factor because the effects of a co-processor were unknown; the 
program makes little use of floating point arithmetic.

A factorial design was used to test the four CIS functions 
under a number of factor values. The microprocessor factor 
was tested in PC/XT and PC/AT 8 MHz configurations. The co 
processor factor could be configured as either "on" or "off"; 
the chip could be either present or absent. Tests on the PC/AT 
machine were run with and without an 80287-10 math co 
processor running at 10 MHz; tests on the PC/XT machine were 
run with and without an 8087 math co-processor running at 5 
MHz.

The workload factor was tested at three levels, represented 
by grids of 8,000, 16,000 and 24,000 cells. Although the 
number of levels is too small to support statistical analysis 
of the results, it is sufficient to suggest a pattern in 
performance. The small number was used to keep the factorial 
design to a reasonable size. As it was, the triple of two 
(microprocessors) times two (co-processor configurations) 
times three (workload levels) resulted in twelve tests for 
each of the four functions.

Workload Design
GIS functions were chosen for study based on the way they 

handled data and based on their ability to illuminate 
performance-influencing relationships. The GRID function, one 
of the data entry functions, reads rows of data into memory 
cell by cell from an external ASCII data file. It also 
transfers the appropriate data into the four binary data files 
on the disk. It was chosen because it handles all cells in 
the same manner, and because it was perceived to have a 
relatively long duration. This is relevant because the longer 
running functions cause greater user uncertainty about waiting 
times.

The SCORE function loads two data layers into memory and 
derives a complete cross tabulation of their cell values. 
Like the GRID function, it executes the same process for each 
cell. In addition it contains a limited number of floating

802



point operations and it spends considerable time drawing 
tabular output on the screen. It would be worthwhile to test 
this output procedure under different conditions. The 
MULTIPLY function loads two layers into memory, performs 
polygon overlay by multiplying the corresponding cells of the 
layers, and writes the result to a new layer on the disk. It 
was selected for the study because it treats all cells the 
same and because overlay is perhaps the most important class 
of CIS function. The CONTOUR function creates and displays 
a contour map of a layer in vector mode. It was selected for 
the study because it relies heavily on floating point 
calculations and because it can be used to show performance 
variations caused by the presence or absence of a math co 
processor.

Synthetic Data Set
The objectives of the synthetic data set design were 1) to 

control the size of the grid and 2) to hold constant all other 
data characteristics as much as possible.

Three databases were constructed with grids of 100 x 80 
cells, 200 x 80 cells and 300 x 80 cells, and two layers were 
created in each database. One contains a series of 80 
vertical stripes running the length of the map layer, one cell 
wide (titled STRIPE). The other is a two-color test pattern 
(titled ZORRO) in which the proportion and distribution of the 
values is the same in each database. A figure "X" extends 
from the four corners of the layer. It intersects a figure 
"Z" whose top and bottom bar divide the layer into thirds.

STRIPE presents a situation in which each cell has a 
different value from the next, and the rows are identical in 
the three databases. The difference among the three grid 
sizes lies entirely in the number of rows. This structure 
insures that each row is processed in an identical manner, and 
that the maximum number of variations in cell values is 
presented. ZORRO was chosen for its simplicity, for the fact 
that the pattern extends throughout the layer, and because the 
distribution of cell values can be reproduced for databases 
of any size. Among the three databases in the study, the 
three versions of ZORRO are vertically proportional and 
horizontally identical. In both layers, the effects of 
several types of data complexity are held constant: the 
number of different cell values, the distribution of cell 
values, and the number of horizontal runs in a row.

A third layer, called ELEV, was derived from the ZORRO 
layer for the purpose of producing contour maps. The SPREAD 
function of OSU MAP-for-the-PC was used to convert ZORRO into 
a map of distances from the test pattern. The result consists 
of a set of concentric bands of cells of equal value 
surrounding the "Z" and the "X" pattern. The value of the 
cells in each band reflects its distance from the test 
pattern.

Test Scripts
During each run the program was monitored while it executed 

a short script of operations. Different scripts were used to 
test different functions, and in most cases they were 
comprised of a single command followed by the command to exit

803



the program. In the script for the GRID function, GRID is 
asked to initialize the STRIPE layer by reading cell values 
from a raw data file. The script for the MULTIPLY test 
requires the multiplication of the STRIPE layer by the ZORRO 
layer. The SCORE script calls for a cross tabulation report 
regarding STRIPE and ZORRO. The CONTOUR function is required 
to produce a contour map of the ELEV layer, specifying ten 
contour levels in all.

Performance Monitor
The Pfinish*performance monitoring software was used to 

measure performance times and to count the number of times 
different sections of the code were entered. Pfinish allows 
the user to define and measure blocks of code as large as the 
entire program and as small as a single executable statement. 
The user may also request a number of output reports which 
aggregate performance test results. The most prominent report 
in the profile, which record the number of times each block 
of code is visited along with the combined duration of the 
visits. Timing in Pfinish relies on the hardware clock, which 
has a resolution of 18.2 ticks per second (Phoenix 
Technologies, 1986).

The user lists the blocks to be measured and requests 
output reports in a batch file. When a test is run, both 
Pfinish and the program being tested are loaded into memory. 
Then the program being tested runs while Pfinish records the 
performance information that was requested in the batch file, 
and the appropriate output reports are generated.

The fact that Pfinish is resident introduces certain 
artifacts. It slows down the apparent processing speed of the 
program (however this does not affect the internal execution 
time of the program) . Pfinish also occupies space on the 
disk, and this reduces the available space for the program. 
During the tests on OSU MAP-for-the-PC, the layer size in the 
GIS had to be reduced to 25,000 cells in order to accommodate 
the performance monitor.

PERFORMANCE MEASUREMENTS AND RESULTS

Performance Indices
Blocks were defined at the level of the program module. 

This decision was based on the fact that each function is 
associated with its own module (sometimes two or three 
modules) which does nothing but implement that function. A 
different batch file was used to test each of the four 
functions, GRID, SCORE, MULTIPLY, and CONTOUR, and the same 
batch file was used to manage all twelve tests of a single 
function. Each batch file was constructed to measure the 
important modules that implemented the function.

Three modules or sets of modules played a key role in each 
batch file. One of these was always the main module or 
modules that implemented the function. The second was the 
module which transfers blocks of data to and from the disk. 
The final required module is the one that waits for user input 
from the keyboard. It had to be included because a method was 
needed to subtract out the time spent waiting for user input.

804



Preliminary Results
The entire battery of tests consists of twelve different 

tests for each of four functions: 48 tests in all. 
Ordinarily each of these would be run several times and 
results would be expressed as the means and variances of a 
number of runs. This procedure is necessary to reduce the 
noise, or the variation, produced by the clock resolution. 
Because the current project is limited in both size and scope, 
multiple runs were not attempted. Instead, the modules that 
primarily implement each function were run five times together 
at the outset to give an indication of the amount of variation 
that could be expected. In all cases there was less than 5% 
variation.

Results
The analysis of results was limited to scrutiny of a small 

number of primary modules. It is in these modules that 
performance-influencing factors can be measured. A list of 
the modules that implement each function is shown below.

Function Modules

GRID INPUTR

SCORE SCORE, PSCORE, OUTSTR

MULTIPLY OVRLAY

CONTOUR THREAD, COTOUR

The graphs in Figures 1, 2, and 3 show the timing results 
for the GRID, SCORE, MULTIPLY and CONTOUR functions. In each 
graph a line connects performance times of modtiles processing 
the 8,000-, 16,000-, and 24,000-cell workloads. Each line 
represents a different combination of microcomputer and co 
processor factors in the operating environment. All results 
are measured in clock ticks.

In all the modules, performance in the PC/XT environment 
appears to be four to five times the duration in comparable 
PC/AT configurations. The primary interaction among the 
factors is tied to the machine speed. In all cases the 
variation associated with the grid size factor and with the 
co-processor factor is more pronounced in the slower machine 
environment. The trend is depicted in the form of steeper 
curves showing the variation due to data volume. It is 
depicted in the form of greater distance between curves 
showing the differences due to the presence or absence of a 
co-processor.

The math co-processor appeared to have almost no effect in 
either the GRID or the MULTIPLY function, and this is because 
neither function relies on floating point processes at all. 
However the CONTOUR function makes extensive use of floating 
point operations, and the results of the CONTOUR tests show 
a substantial effect of the co-processor. The THREAD module 
performed ten times as fast on a PC/XT with a co-processor 
than on a PC/XT with no processor installed.

Because each line on the graphs represents only three

805



observations, the lines cannot be analyzed to predict 
performance for a full range of workloads. However, the 
graphs indicate that strong linear relationships exist between 
the size of the grid and the performance time.

SUMMARY

These tests represent a demonstration of testing techniques 
for microcomputer-based gridcell CIS. The results show 
promising patterns, but conclusive results would have to based 
on a more extensive testing regime. All tests should be run 
a number of times, and results should be expressed as the 
means of the output of the runs. In addition, a larger number 
of observations is needed to properly test the influence of 
the data size factor.

A further variation in the workloads is needed to represent 
a more complete assortment of predictive factors: the variety 
of distinct cell values, the number of horizontal runs, the 
probable distribution of cell values, user-defined search 
radii, etc. The results of such a study can be analyzed using 
simple regression techniques. Outcomes for individual modules 
might then be summed to arrive at performance predictions for 
entire functions.

BIBLIOGRAPHY

Brickner, R. G., 1986. "An Execution Profiler for the PC," 
PC Tech Journal, Vol 4 (11): 120-130.

_______, 1987. "Execution Profilers for the PC, Part 2,"
PC Tech Journal, Vol 5 (2): 166-171.

DeWitt, D. J., 1985. "Benchmarking Data base Systems: Past 
Efforts and Future Directions," Data base Engineering, Vol 
8 (1): 2-9.

Ferrari, D., G. Serazzi and A. Zeigner, 1983. Measurement and 
Tuning of Computer Systems. Prentice-Hall, Englewood 
Cliffs, N.J.

Goodchild, M. F. and B. R. Rizzo, 1986. "Performance
Evaluation and Workload Estimation for Geographic 
Information Systems," Proceedings, Second International 
Symposium on Spatial Data Handling.

Greenlee, D. D., J. W. Van Roessel and M. E. Wehde, 1986. 
An Evaluation of Vector Based Geographic Information 
Systems at the EROS Data Center, U.S.G.S. EROS Data 
Center, draft report.

Heidelberger, P. and S. S. Lavenberg, "1984. Computer Perfor 
mance Evaluation Methodology," IEEE Transactions on 
Computers, Vol c-33 (12).

Marble, D.F. and L. Sen, 1986."The Development of Standardized 
Benchmarks for Spatial Data base Systems," Proceedings f 
Second International Symposium on Spatial Data Handling.

806



Phoenix Technologies, Ltd., 1986. PFinish User's Manual. 
Norwood, MA: Phoenix Computer Products Corporation.

Stonebraker, M., 1985. "Tips on Benchmarking Data Base 
Systems," Database Engineering. Vol 8 (1): 10-18.

Tomlinson, R. F. and A. R. Boyle, 1981. "The State of
Development of Systems for Handling Natural Resources 
Inventory Data," Cartographica, Vol 18 (4): 65-95.

16

14 

12

§10
0o
«-^ o 
CO*

* 4

O 2

f S 1

X

—-"

:£=:SE:

FIG 1 
TIMING 
RESULTS 
FOR
CONTOUR

/ ATC, XTCare 
co -processor

/' configurations

vj^a^
8 16 24 8 16 24

THREAD COTOUR

4

'"^ ^
o o
^ 2
CO*: ,
1—

| /.

&
.Xp

.SJSS^

' XT, XTC

tf : r AT, ATC ___ ,

8 16 24 8 16 24 8 16 24
O SCORE PSCORE OUTEXT
0 FIG. 2 TIMING RESULTS FOR SCORE

^ 3
0o o
- 2
CO

o1- 1

CLOCK

10

ty 0

/ O
, •' H

• •^^ O

/ FIG 3 
TIMING RESULTS 
FOR 

£>/ GRID AND 
V MULTIPLY

f
^•^

8 16 24 0 8 16 24 
INPUTR OVRLAY

DATABASE SIZE (1000s of cells)

807




