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Abstract

In encoding, simplifying, amalgamating and intersecting cartographic features, it is useful 
to know the precision of locational data being processed. It is suggested that representing 
spatial phenomena in a hierarchical tessellated framework can facilitate documenting the 
certainty of coordinates and in dealing with its consequences. Objects thus encoded can 
identify the precision with which they were measured, and can retrieved at lower degrees 
of precision, as appropriate. This scale sensitivity is an inherent aspect of quadtree and 
pyramid data structures, and one which the literature on GIS data quality has yet to 
address in detail. A specific hierarchical tessellation of the sphere into triangular facets is 
proposed as a basis for indexing planetary data; Although composed of triangular facets, 
the tessellation is a quadtree hierarchy. Its geometry is such that that its facets are planar, 
subdivide a sphere naturally and are efficient to address. Methods for generating and 
manipulating hierarchical planetary geocodes are described.

1 Locational Data Quality

Whatever else they may convey, all spatial data possess coordinate locations. Each 
geographic entity recorded in a GIS must have an identifiable spatial signature among its 
properties. As a GIS must be relied upon to integrate and analyze independent collections 
of spatial data, it should possess means for coping with variability in the quality of 
coordinate and other data in the features, layers and themes it records, according to their 
nature, source and purpose. This is usually not possible, hence rarely done.

1 Based on paper originally prepared for Specialist Meeting 1 for the first research initiative of the National 
Center for Geographic Information and Analysis, Santa Barbara, CA, Dec. 12-16,1988.
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Without the ability to generate spatial inferences, a GIS is little more than an 
inventory of digitized geographic facts. In order to draw quantitative conclusions about 
objects in space and time, one must know or be able to estimate the reliability and certainty 
of the tools and information employed. All too few GIS tools in common use attempt to 
utilize the scant quality data that their databases may provide. Much has been written 
about building data quality information into GIS, but few actual systems deliberately do 
so, and none seem to take its implications seriously. While this state of affairs is not new, 
it is even more a cause for alarm today than it was five years ago: "We experience 
difficulty in articulating the quality of information represented in a database principally 
because we don't understand how to analyze data based on information about its qualities" 
(Dutton, 1984b).

Mensuration as Modelling. Most GIS enforce a distinction between recording locations 
and modelling features. Locations are denoted by coordinates, which in turn are 
associated with features (objects in the real world modelled via some abstraction 
mechanism). The coordinates pin the features to the Earth at one or more locations, but do 
not specify how they are encoded. Should coordinates change (due to resurvey, editing or 
recalculation, for example), this normally has no impact on the features associated with 
them beyond causing changes in size and shape. Yet, when coordinates change, 
something important may have happened. We have been so paraDIMEed into fanatically 
enforcing a dichotomy between the topology and coordinates of cell complexes that we 
have come to assume that topology alone supplies structure, and there is no structure 
worth knowing about in a feature's coordinates. This ignores much of the "deep 
structure" (Moellering, 1982) that geographic data — even coordinates — may be viewed 
as having. We believe that the coordinates of features indeed have a "depth" component, 
that this can be modelled via hierarchical tessellation, and that this approach can better 
characterize uncertainty about cartographic features.

2 Hierarchical Tessellations

Hierarchical tessellations are recursive subdivisions of space-filling cells on a model 
surface, or manifold. The most familiar group of hierarchical tessellations is the family of 
data structures known as quadtrees, square lattices of 2-cells that double their resolution 
as their number multiplies by four, down to some limit of resolution [see Samet (1984) for 
a detailed review of the quadtree literature; quadtrees are discussed in relation to GIS by 
Samet (1986) with a rejoinder by Waugh (1986)]. Other geometries and branching 
schemes more suitable for modelling global distributions have been proposed or 
developed (Dutton, 1984a; van Roessel, 1988; Mason and Townshend, 1988; Tobler 
and Chen, 1986), but few have gained acceptance in the GIS realm. In reviewing and 
comparing data models for global GIS applications, Peuquet (1988) states:

... a regular, hierarchical spherical tessellation would have many advantages as a global data 
model. First of all, such a model would retain all of the desirable properties of a planar 
tessellation including implicit spatial relationships; geographic location is implied by location 
in the database. Multiple scales and a regular structure are also amenable to rapid search.

Quadtrees were developed to facilitate image processing operations, and for the most 
part have continued to be oriented toward raster technology. As Waugh (1986) notes, this 
can be a drawback for GIS applications, which tend to use vector data. Furthermore, 
while map sheets can be regarded as images and handled as rasters, it is a mistake to think 
of a GIS as a catalog of maps; while a GIS may manage map data, it can go much further 
than maps in representing properties of spatial phenomena. As the Earth is neither flat nor 
a cube, any scheme that is based on subdividing rectangular map images of a planet will 
fail to provide consistent global coverage (consider how the UTM grid system contorts 
itself to cover the globe). Cubic quadtrees have been developed to store global data 
(Tobler and Chen, 1986; Mark and Lauzon, 1986). These have tended to stress storage 
and retrieval of map and image data (such as segmentation and other conversion tasks), 
rather than modelling of planetary phenomena. Quadtrees represent a technology in search 
of applications; planetary modelling is a set of applications in need of technologies. GIS 
offers an environment where they may connect, provided some basic outstanding issues
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are addressed. In a brief but well-informed overview of global database issues, 
Goodchild (1988) describes the need for research on planetary spatial analysis:

... there is as yet no (spherical) extension of the Douglas-Peucker line generalization 
algorithm, and only limited literature on the generation of Thiessen polygons and polygon 
skeletons. There is no spherical version of point pattern analysis, and no literature on 
spatially autocorrelated processes. It is clear that much research needs to be done in developing 
a complete set of spatial analytic techniques for the spherical case.

We feel that the paradigm of geodesic tessellations may provide keys to unlock some of 
these problems, by enabling higher-order data modelling capabilities that vector, raster, 
quadtree and hybrid data structures can draw upon to handle planetary data in a consistent 
fashion, as the remainder of this paper will attempt to demonstrate.

Polyhedral Tessellations. Rather than developing data structures (either raster or vector) 
to encode a map — or even a map series — one can base one's efforts on the requirement 
to describe an entire planet, then subdivide the model into tiles of useful size. This will at 
least assure that (unlike UTM sheets) tiles will fit together regularly and consistently. The 
most obvious choices for a basis for tessellation are the five platonic solids; other regular 
polyhedra (such as a cubeoctahedron, rhombic dodecahedron or rhombic tricontahedron) 
can be used (and have been for map projections), although not all are capable of 
self-similar, recursive tessellation (the shape of facets may change when subdivided). 
Given a basis shape that can be indefinitely subdivided, it is necessary to select one of 
several alternative tessellation strategies. Triangular facets, for example, may be 
subdivided into 2, 3,4, 6 or 9 triangular tiles. In some of these tessellations the shapes of 
tiles may vary, in others their sizes may vary, or both size and shape may vary. This is 
the same problem that designers of geodesic domes face; they tend toward solutions in 
which struts and connectors are as uniform as possible, as this expedites the manufacture 
and assembly of geodesic structures. The great majority of geodesic domes break down 
each facet into either four ("Alternate") or nine ("Triacon") tiles (Popko, 1968).

3 A Geodesic Planetary Model

We have been investigating a method of modelling planets based on triangular 
tessellation of an octahedron, in which each facet divides into four similar ones; this 
yields successive levels of detail having 8, 32,128, 512, 2048,... facets overall, or 1, 4, 
16, 64,256,... facets per basis octant. The cover page illustrates the basic form and 
orientation of the model, and figure 1 its development. Table 1 itemizes statistics for this 
hierarchy and its linear and areal dimensions if Earth-sized. In Table 1, column 1 
indicates the hierarchical level of breakdown, column 2 (=4level), and column 3 (=2level), 
respectively indicate the number of triangular facets and edges that partition an octant at 
each level. Columns 4 and 5 itemize the linear resolution and unit area each level has on a 
sphere 4,000 km in radius; approximate distances and areas are given for the spherical 
wedges defined by the polyhedral facets. Column 6 specifies the number of bits needed to 
identify facets, reflecting the "cost" of precision.

We shall not attempt to justify this particular tessellation as an optimal one; the 
scheme does appear, however, to strike a balance between geometric utility, scale 
sensitivity and computational cost as a way model the surfaces of spheroids. As its 
vertices are at right angles, an octahedron readily aligns itself to cardinal points in a 
geographic world grid; subsequently-introduced vertices are easily computed, as they 
bifurcate existing edges (as shown on the cover page). The breakdown generates eight 
quadtrees of facets; the structure may be handled as if it were a set of rectangular region 
quadtrees. However, as their elements are triangular rather than square, many of the 
geometric algorithms devised for rectangular quadtrees will not work on such datasets 
without modification.

We call this spatial data model a Quaternary Triangular Mesh (OTM). The remainder 
of this section will explore some of QTM's geometric, informational and computational 
properties. The sections to follow will focus on the use of QTM in modelling spatial
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Figure 1 (left):
Development of Quaternary
Triangular Mesh to level 3

on a basis octahedron

Figure 2: QTM Facet Numbering

Table 1: Planetary Octahedral Triangular Quadtree Statistics 
________________for 1 to 24 Hierarchical Levels (per octant^_________

CODE 
LEVEL _____________FACETS DIVISIONS RESOLUTION _____FACET AREA BITS

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

4
16
64

256
1,024
4,096

16,384
65,536

262,144
1,048,576
4,194,304

16,777,216
67,108,864

268,435,456
1,073,741,824
4,294,967,296

17,179,869,184
68,719,476,736

274,877,906,944
1,099,511,627,776
4,398,046,511,104

17,592,186,044,416
70,368,744,177, 664

281. 474 r 976.710.656

2
4
8

16
32
64

128
256
512

1,024
2,048
4,096
8,192

16,384
32,768
65,536

131,072
262,144
524,288

1,048,576
2,097,152
4,194,304
8,388,608

16.777 r 216

1444 Km
722 Km
361 Km
180 Km
90 Km
45 Km
23 Km
11 Km
6 Km
3 Km
2 Km

705 M
352 M
176 M
88 M
44 M
22 M
11 M
6 M
3 M
1 M

69 Cm
34 Cm
17 Cm

15, 924,500 KmSq
3,981,125 KmSq

995,281 KmSq
248,820 KmSq
62,205 KmSq
15,551 KmSq
3,888 KmSq

972 KmSq
243 KmSq
61 KmSq
15 KmSq

3,796,696 MSq
949,174 MSq
237,294 MSq
59,323 MSq
14,831 MSq
3,708 MSq

927 MSq
232 MSq
58 MSq
14 MSq
4 MSq

9,052 CmSq
2.263 CmSq

2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
4fi

entities, and how this might address problems of precision, accuracy, error and 
uncertainty in spatial databases. Throughout, the discussion's context will remain fixed 
on exploring QTM as a geodesic, hierarchical framework for managing and manipulating 
planetary data. The work reported here stems from a scheme (appropriately known as 
DEPTH) for storing digital elevation data using polynomial coefficients organized as 
quadtrees (Dutton, 1983); this was subsequently recast into a global hierarchical 
triangular tessellation for terrain modelling called GEM (Dutton, 1984a).The tessellation 
geometry employed for QTM is similar to that proposed by Gomez Sotomayor (1978) for 
quadtree representation of digital terrain models adaptively split into triangular facets. We
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use a different numbering scheme, and embed our model in a spherical manifold rather 
than a planar one (although for many QTM computations, a projection is best employed).

OTM as geocoding. In a QTM tessellation, any location on a planet has a hierarchical 
address, or geocode, which it shares with all other locations lying within the same facet. 
As depth in the tree increases, facets grow smaller, geocodes grow longer and tend to 
become more unique, being shared by fewer entities. A QTM address identifies a 
particular triangular facet at a specific level of detail; that triangle's vertices are fixed on the 
QTM grid, covering a definite patch on the planet. Each such facet can be subdivided (by 
connecting its edge midpoints) into four similar ones, numbered 0 through 3, as illustrated 
by figiMS 2; we refer to the four children of each facet as its tiles. Each tile thus 
generated can be identified by a 2-bit binary number, so that 2L bits (or LI4 bytes) are 
needed to specify a QTM address at L levels of detail. QTM addresses therefore consist of 
variable-length strings of 2-bit numbers, for example 0311021223013032. Such 
identifiers lend themselves to being represented by base 16 numbers, having L/2 
hexadecimal digits; the 16-level QTM address 0311021223013032 is, in hex notation, 
the (32-bit) number 3526B1CE. To relate this to a more familiar context, QTM Addresses 
at level 16 provide the same order of resolution as LANDS AT pixels. Refer to column 6 
of Table 1 for the size of binary identifiers at various QTM levels of resolution (divide by 
four to obtain the size in hex digits).

QTM as geometry. To identify exactly where on earth QTM hex geocode 3526B1CE (or 
any other) lies, one must know the specific method for assigning numbers to QTM facets 
that was employed to construct the geocode. While there are a number of ways to do this, 
few of them seem useful. The QTM tessellation always generates a triangle for each 
vertex of a facet plus one triangle at its center; we always number corner triangles 1,2 or 
3, and designate the central triangle as zero. This scheme has a convenient property: any 
number of zeros may be appended to a QTM address without affecting its geographic 
position. While trailing zeros do not modify the location of a measurement, they do 
signify its precision. We shall return to discuss this property later on.

Having fixed the central triangle as facet 0, we must then assign each of the remaining 
ones as 1, 2 or 3. Noting that triangles point either upwards or downwards, we identify 
the orientation of facets as either upright or inverted: An upright facet has a horizontal 
base with an apex above it, while an inverted facet has a horizontal base with an apex 
below it. All four octants of the northern hemisphere are upright; all four of the southern 
hemisphere are inverted. Tessellating an octant generates three outer tiles (numbered 1, 2, 
3) sharing its orientation, and an inner one (tile 0) having opposite orientation. Let us 
designate the apex of each triangle (regardless of N/S orientation) as node 1, which locates 
tile 1. Nodes 2 and 3 thus define the endpoinjs of the octant's equatorial base; we can 
assign them arbitrarily but consistently, thus defining where tile 2 and tile 3 are located 
within each octant, as figures 2, 3 and 7 show. When we do this, we find that the 8 tiles 
numbered 1 cluster about the north and south poles, and that tiles numbered 2 and 3 lie on 
the equator. We arbitrarily fix node 2 (hence four of the tiles numbered 2) at the equator 
(O2 N/S) and the Greenwich Meridian (O9 E/W), and another (with its four surrounding 
tiles) at the antipode (ISO9 E/W). Finally, each of the points where the equator intersects 
longitudes 90Q E and 90s W colocate four octant vertices (and tiles) numbered 3, fully 
defining the numbering of nodes and facets for the first QTM level. Figure 3 diagrams 
this ordering for a sphere and for an octahedron.

OTM as addressing. A depth-first ordering of QTM geocodes traces a specific pattern in 
the process of enumerating an octant's facets. This pattern represents a memory map, 
delineating the sequence in which geocodes are ordered in computer storage. The 
compactness of this arrangement helps one map point coordinates to memory addresses 
which are close to those of nearby points. Exploiting this property can simplify the 
problem of spatial search from a 2-dimensional procedure to a 1-dimensional one. The 
pattern generated by visiting successive QTM addresses is the set of self-similar, 
self-intersecting curves shown in figure 4. QTM location encoding is clearly a form of 
spatial indexing; not only are geocodes systematically ordered into quadtrees, they have 
the property that numerically similar QTM geocodes tend to lie in close spatial proximity to
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Figure 3a: First-order QTM tessellation of a Figure 3b: First-order QTM tessellation of an 
sphere, showing facet numbering octahedron, unfolded from S pole

Level 2 QTM Codes 
shown in O-tiles 
of level 3 facets. 
Sinusoidal 
projection.

Figure 5: Pattern of least significant digits of QTM
codes, forming hexagonal clusters (attractors)

Figure 4: Second-order QTM Code Sequencing 
(memory map order). ZOT projection.

Level 0 Level 1
Figure 6: Octa and first level QTM Attractor (node) numerology; Child nodes are 

numbered 6 - (a+b), where a and b are the nodes of the parent edge.
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one another. Furthermore, as a consequence of the numbering pattern described in section 
3 above, facets at the same level having QTM codes terminated by the digits 1,2, and 3 
form hexagonal groups of six triangles regularly arrayed across the planet; those ending in 
0 are isolated triangles filling gaps in the hexagonal pattern. Figure 5 is an equal-area 
mapping of this pattern for third-order facets for northern hemisphere octants 1 and 3.

This numbering pattern has properties worth noting. The centerpoint of each 
hexagonal cluster of tiles is a vertex in the QTM grid shared by each tile in that group. 
This nodal point may be thought of as a locus of attraction, or attractor, to which nearby 
observations gravitate. Only tiles numbered 1,2 or 3 are attracted to such nodes; 0-tiles 
serve as their own attractors. Once an attractor manifests itself, its basis number will 
persist in place at all higher frequencies. Space in the vicinity of an attractor is affected as 
by gravity; the larger an attractor (the shorter its path to its root node), the stronger is its 
influence. Higher order attractors have smaller ranges of influence than lower order ones, 
and consequently exhibit less locational uncertainty. Three interlocking triangular grids of 
hexagons result from this; they cover 75 percent of the planet, with 0-tiles occupying the 
remaining triangular patches. Figure 6 illustrates the development of attractors; when an 
edge is bifurcated, a new node appears;we number it as 6 - (a + b), where a and b are the 
basis numbers of the parent nodes.

Aliasing. Attraction and Averaging . As an alternative to mapping locations to QTM 
facets, one may consider QTM grid nodes as their loci. By aliasing tiles to nodes, a 
higher degree of spatial generalization results. It differs from allocating coordinates to 
facets in that it averages as well as partitions observations into sets. Node aliasing 
provides a key to dealing with a particularly vexing consequence of many region quadtree 
schemes, the unrelatedness of adjacent high-order tiles that share an edge also separating 
lower-order facets. Each level of a quadtree isolates facets (and any values that may be 
recorded for them) into four subtrees. Whether values are built up from area estimates or 
obtained via progressive point sampling, discontinuities can occur between sub-branches 
of the tree simply due to the placement and orientation of the sampling grid. While this 
can be mitigated by smoothing the resultant grid of values (as demonstrated for terrain in 
Dutton, 1983), this solution is inelegant and should not be necessary.

We can better understand node averaging by conducting the following thought 
experiment: Sample a continuous surface, such as topographic relief, assigning QTM 
addresses to a set of 3D point observations, aliasing all source locations which happen to 
fall into the same QTM facet to the same elevation, as there is only one value stored per 
facet. 1 Let us assign the elevations of the 0-tiles to their centroids, and assign averages of 
the elevations of proximal 1-, 2- and 3-tiles to their common QTM nodes, as figures 5 and 
6 show.2 We thus obtain a mesh of triangles, the vertices of which have fully-defined 
latitudes, longitudes and elevations. The edges of the mesh connect QTM nodes to the 
centroids of their facets. A surface defined by these facets will, in general, be smoother 
(exhibit less aliasing) than one defined by interconnecting the centers of adjacent atomic 
tiles. Furthermore, because node elevations are spatially symmetric averages, a surface 
thus defined is relatively stable under translation and rotation (unlike an unaveraged QTM 
coverage, or any quadtree for that matter); its contours would not appreciably change were 
the orientation of the QTM grid to be incrementally shifted.3

4 Computational Considerations

Tessellation methods have long been advocated as ways to partition and index spatial 
data. The majority of this work seems to be oriented toward decomposing vector and

.! This can be done by stratifying elevations and recording the changes between strata as attributes of 
facets, as described in (Dutton, 1983) and (Dutton, 1984a). As it is difficult to avoid aliasing elevations, 
the surface as encoded may be excessively quantized.
2 This requires algorithms which, given a QTM facet ID, can identify the QTM node to which it aliases, 
and the IDs of the other facets that converge at that point.
3 While we are confident of this, a formal proof (that node averaging results in a more representative and 
stable sampling of spatial attributes) remains to be constructed.
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raster databases into tiles of fixed or varying size and content (Weber, 1978; Vanzella and 
Caby, 1988) for access in a GIS. Such approaches lead to various hybrid data structures, 
in which an overview is provided by a tessellated component and details furnished by the 
vector and raster primitives. Conceptually, this seems little different than storing data as 
electronic map sheets of equal or differing sizes. We feel that geodesic tessellations have 
considerably greater modelling power than has been exploited to date.

Known and unknown properties. QTM addresses could replace coordinates in a 
georeferenced database. When their length is allowed to vary, the accuracy of the 
positions they encode can be conveyed by their precision. Therefore, the number of digits 
in a QTM geocode may be used as a parameter in processing the coordinates and/or 
attributes it represents. This permits the precision of coordinate points to be independently 
specified, and in turn allows analytic procedures to make more informed judgements in 
modelling the behavior of spatial entities. Describing features at varying precision may or 
may not result in greater efficiency: As presented here, the QTM model does not specify 
how spatial entities are defined, how storage for them is structured or how to manipulate 
QTM elements. While we understand how to perform certain operations on QTM 
geocodes, we know little about how to optimize data structures or processing based on 
QTM's tendency to cluster nearby locations in memory, or how to best take advantage of 
the facet-node duality that we have called attractors.

Evaluating spatial data at QTM grid nodes might simplify spatial analysis tasks. For 
example, the need to identify and remove slivers following spatial overlay might be 
lessened by filtering the coordinates of the features of input coverages via QTM 
tessellation. As all coordinates in the neighborhood of a node are mapped to its location, 
slight variations in otherwise identical vector strings will tend either to vanish or to alias 
into structured caricatures of themselves. A related property of QTM that begs for 
application is the behavior of geocodes as identical digits are appended to them: the QTM 
codes 031,0311 and 03111, for example, all alias to the same attractor, hence can 
represent the same point. Appending more ones does not define a new node, it simply 
constricts the locus of influence for the attractor defined by 031, adding precision to it (as 
do trailing zeros; see sect. 3). However, should some other digit follow such a group 
(e.g., 031112), a new attractor will come into play, changing the locus of the geocode. 
It turns out that for Octant 1, the area dominated by the attractor of QTM geocode 031 
(also an attractor of five other 3-digit geocodes) is in the USSR, centered in the Caucuses 
between the Black and Caspian Seas. Respecifying the QTM code 031111 as 031112 
results in shifting to another attractor 50 km away.

QTM in context.. There is an increasing amount of literature and interest concerning the 
properties and computational geometry of hierarchical tessellations. The subject appears 
to connect many branches of knowledge and goes back many years, involving disciplines 
as diverse as crystallography, structural engineering, design science, computer science, 
solid geometry, lattice theory, fractal mathematics, dynamical systems and geography. 
One particularly relevant source of information concerning the properties of hierarchical 
tessellations is a group of research fellows and fellow travelers based at the British Natural 
Environment Research Council (NERC) (Mason and Townshend, 1988). Most of this 
work is less than five years old, and tends to view the subject matter in a general, 
theoretical fashion. 1 As befits workers in a field that knows no bounds, the NERC group 
has coined the adjective tesseral to characterize hierarchical tesselations; it is rooted in the 
Greek word tessera - the tiles used in making mosaics. QTM is a tesseral construction.

One of the more interesting aspects of the tesseral perspective is the possibility of 
developing special arithmetics for manipulating elements of hierarchical tessellations. This 
was demonstrated for the generalized balanced ternary (GET) system, a hexagonal 
tessellation developed at Martin Marietta in the 1970's as a spatial indexing mechanism

1 The NERC papers are solidly in the tradition of fugitive spatial analysis literature that is GIS's 
birthright: The Michigan geographic community's discussion papers; Harvard Papers in Theoretical 
Geography; Dave Douglas' subroutine library; ODYSSEY (a fugitive GIS); the Moellering Commission's 
reports, and multitudes of other government research studies, reports and documents.
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(Lucas, 1979). GBT's numbering system allows direct computation of properties such as 
distances and angles between locations without manipulating coordinates (van Roessel, 
1988). Other tessellations have related arithmetics, some of which have been explored in 
the Tesseral Workshops (Diaz and Bell, 1986). Such an arithmetic could be developed for 
the QTM tessellation should none already exist.

Polyhedral operations. One common objection to polyhedral data models for GIS is that 
spherical geometry is quite cumbersome (in the absence of tesselar arithmetic operators), 
and that for many applications the spherical coordinates that describe polyhedra require 
frequent conversion to and from cartesian coordinates. Because planar geometries are 
generally much more straightforward than spherical ones, it is almost always easier to 
compute quantities such as distances, azimuths and point-in-polygon relations on the plane 
than on the sphere. The former may involve square roots and occasional trig functions, 
but rarely to the degree involved in geographic coordinates, where spherical trigonometry 
must be used unless rather small distances are involved or approximations will suffice. 
Polyhedral geometry, being faceted, is locally planar but globally spherical. What can be 
considered "local" varies, according to the projection employed (for plane coordinates) or 
the type and level of breakdown (for tessellations).

Perhaps the most basic polyhedral operation is the derivation of facet addresses 
(geocodes) from geographic coordinates (or its inverse). This involves recursive 
identification of triangular cells occupied by a geographic point, appending each identifier 
to the location code already derived. This process has been named trilocation, and is 
described in Dutton (1984a). One of the simplest trilocation algorithms derived to date for 
triangular tiles determines a tile's ID by comparing the squared distance from the test point 
to the centroid of its facet's 0-tile and each of the three outer ones until the closest one is 
found (this usually takes 2 or 3 squared distance comparisons per level). If performed 
using geographic coordinates, great circle distances are needed, but if done in the planar 
domain cartesian distances will suffice (in neither case need square roots be extracted, as 
we are interested in ordering distances, not in their absolute magnitudes).

5 Conclusions

Effective spatial analysis in a GIS environment seems to require detailed information 
about data quality, not just statistical error summaries. It is a truism that numerical 
representations of map data - particularly coordinates - can convey the illusion of 
accuracy simply because numbers tend to be represented at uniform, relatively high 
precision. No GIS in general use parameterizes the precision of coordinate data to reflect 
its inherent accuracy or precision. As a result, intelligence potentially useful for spatial 
analytic and cartographic decisions tends not to be utilized, complicating procedures and 
engendering uncertain, ad hoc analyses. Solving this problem is critical and calls for the 
development of new models of spatial phenomena, as Chrisman (1983) explains:

Space, time and attributes all interact Quality information forms an additional dimension or 
glue to tie those components together. Innovative data structures and algorithms are needed to 
extend our current tools. No geographic information system will be able to handle the 
demands of long-term routine maintenance without procedures to handle quality information 
which are currently unavailable.

A recurring problem, and one that we create for ourselves, involves the very idea of 
coordinates; it is generally assumed that coordinates exist in nature, when in fact they are 
rather artificial notations for spatial phenomena. Features in a GIS don't actually have 
coordinates, coordinates are in fact ascribed to them as are other attributes. Too much of 
the work in spatial error handling has been devoted to tools that deal with coordinates 
rather than with spatial entities; too little consideration has been given to exploring 
alternative spatial paradigms. A polyhedral, tesseral perspective might provide this, by 
offering a unified framework for representation, an inherent sensitivity to scale and new 
mechanisms for dealing with spatial error and uncertainty. Geodesic modelling offers the 
GIS community a rare opportunity to create more effective tools for addressing some of 
the multitude of problems, both local and global, now facing us and our planet.
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