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ABSTRACT

Distance and proximity are critical variables in many geo 
graphic analyses. In raster geographic analysis systems, 
distance is most commonly determined by a sequential growth 
process whereby distances are accumulated in radial bands 
from an initial set of features. While such procedures are 
very efficient for the generation of small buffer zones, 
they become cumbersome when large distance surfaces need to 
be determined. As an alternative, two "pushbroom" algo 
rithms are presented — one for the case of calculating 
true Euclidian distance over a plane, and a second for in 
corporating frictional effects in the generation of cost 
distance surfaces. In the former case, a complete surface 
of any size can be calculated in exactly four passes throu 
gh the data. In the second, as few as two complete passes 
are required, depending upon the nature of the frictional 
effects encountered. This economy arises from the nature of 
pushbroom techniques, whereby computations proceed sequen 
tially (not radially) through the raster grid, acquiring 
directionally-oriented knowledge in accordance with the di 
rection of the pushbroom path.

INTRODUCTION

A common requirement of raster-based Geographic Infor 
mation Systems is the determination of distance. For exam 
ple, if the distance from each grid cell to the nearest de 
signated feature can be calculated, a buffer zone of any 
given distance may then be established. Buffer zones are 
essential planning tools in the exclusion or confinement of 
planning activities or investigations. A knowledge of dis 
tance is also essential when resources are clustered, and 
the type or level of activity that may be maintained is 
consequently distance-dependent. For example, the differ 
ence between animal species in the importance of distance 
to the nearest well is an important consideration in range 
management (Olsson, 1985, 81). Likewise, when resources 
are dispersed but access is limited, proximity to access 
points, such as roads, is an important management concern. 
Indeed, distance is a common ingredient in the assessment 
of processes that exhibit distance decay, including pro 
cesses of mineralization, locational economics, and assess 
ments of risk.

DISTANCE

Two broad approaches to the calculation of distance in 
raster-based systems are commonly in use. The first, and
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Figure 1 : In the most 
direct of the distance 
techniques, distance is 
calculated as the least 
distance between a cell 
and each of the design 
ated feature cells. For 
example, the distance 
recorded at position A 
will be the minimum of 
the distances between A 
and each of the feature 
cells at Fl through F6.

most direct, relies upon simple Pythagorean geometry 
(Figure 1). Here the distance of each cell to the nearest 
of a set of designated feature cells is determined by cal 
culating the Euclidian distance from that cell to each fea 
ture cell using row and column subscripts (eg., Olsson, 
1985, 81). When distances from a single feature cell are 
required, the technique is quite efficient, with the number 
of operations being proportional to the square of the maxi 
mum distance (in grid cell units) required. In addition, 
the distances calculated are truely Euclidian. However, as 
the number of designated feature cells (ie., cells from 
which distance must be calculated) increases beyond one, 
the procedure requires that the nearest neighboring feature 
cell be determined for each cell in the grid. As a result, 
efficiency is proportional to the number of feature cells 
as well as the maximum distance involved. In addition, the 
positions of all cells belonging to the designated features 
must be known in advance (or be determined from the ras 
ter) , with their coordinate positions being held in some 
form of accessible stack or array. Given the complexity of 
many CIS feature patterns, the technique can thus quickly 
become bogged down.

To avoid these problems, a second approach (eg., 
Tomlin, 1986) employs the concept of growth rings. Ini 
tially, each of the feature cells is tagged with a distance 
of 0 while all other cells are marked with a distance equal 
to the maximum distance that will be determined. Then in a 
series of passes through the image, distance is "grown" 
from the feature cells in a series of concentric rectangu 
lar "rings" until the maximum distance is reached (Figure 
2). The technique has the very strong advantage that the 
locations of the feature cells do not need to be stored in 
an accessible list, nor do any nearest-neighbor calcula 
tions need to be made. By definition, each growth ring will 
be constructed with reference to the nearest feature cell, 
and distance to that feature cell can always be determined 
by examining the squared distance of an adjacent cell with 
in the previous growth ring. Specifically, squared dis 
tance is a linear combination of squared distance in X and 
squared distance in Y (the Pythagorean theorum). As a re 
sult, squared distance is also equal to that of any inter 
mediate distance plus the differences in squared X and squ 
ared Y between the new point and that intermediate. Each 
ring is therefore grown by adding onto the distance of the 
edge cells the difference in squared X and squared Y. As it
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turns out, differences in squared X and squared Y systemat 
ically increase by an increment of 2 (Figure 3). The nec 
essary increment can therefore be determined by looking at 
the previous increment in that direction and adding 2.

Figure 2 : In a second 
approach, distance is 
"grown" in concentric 
rings around each fea 
ture . The shaded bands 
here indicate the grow 
th ring stages in this 
process. If the process 
is continued far enough 
these rings will coal 
esce to form a continu 
ous distance surface. 
Like the method indica 
ted in Figure 1, dist 
ances are Euclidian.

Figure 3 : With dist 
ances being stored as 
squared distances, new 
distances can be deter 
mined by adding incre 
mental changes in delta 
X squared and delta Y 
squared. For example, 
Cell A differs from the 
cell in the upper-left 
corner by 0 in squared 
Y and 7 (ie. [18-13]+2) 
in squared X. The dist 
ance of Cell A is thus 
equal to 18+0+7=25. In 
cremental squared dist 
ances always differ by 
2. Thus the distance of 
cell B is 18+7+7=32 — 
i.e., the previous dif 
ference of 5 in squared 
X plus 2 plus the prev 
ious difference of 5 in 
squared Y plus 2.

The use of squared distance has several advantages. In 
addition to being required by the algorithm, the avoidance 
of square roots significantly speeds operations. Only after 
all growth rings have been calculated would a final pass be 
made to take the square roots of cell values. In addition, 
the intermediate storage of squared distances allows per 
fect precision with integer data. As a result, rounding er 
rors do not accumulate but only affect the results of the 
final pass. The procedure, then, does have a considerable 
amount of appeal. However, it is also not without some pro-
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blems. First, if integer arithmetic is to be used, most ap 
plications will require 32 bit integers because of the need 
to store squared distances (with 16 bit integers, the maxi 
mum distance that may be calculated is a mere 181 cells). 
Second, the procedure requires the ability to move quite 
freely about the image cells. Random access is trivial if 
the entire image is in memory, but with 4 byte integers or 
floating point values, the size of image that will readily 
fit into memory may be quite limited. Random file access 
can alleviate this, but the speed of random disk operations 
is typically quite slow. Finally, and perhaps most signifi 
cantly, the number of passes that must be made through the 
image is a direct function of the maximum distance that 
must be calculated. While the determination of narrow buf 
fer zones will be quite efficient, the calculation of a 
continuous distance surface over any extensive region would 
likely be quite slow.

COST DISTANCE

An interesting feature of the "growth" procedure is 
that its logic may also be developed to incorporate frac 
tional effects. Whenever distance is used to imply the cost 
of movement, that cost will be a function not only of dis 
tance, but also of the frictional effects of various rela 
tive and absolute barriers such as land cover and slope. 
This new measure may be called "cost distance", and may be 
evaluated in any meaningful unit involving distance, money 
or time.

In the evaluation of cost distance using a growth pro 
cess (Tomlin, 1986), a matrix is first constructed contain 
ing the designated feature cells marked with a distance of 
0, and with all other cells being tagged as unknown. In ad 
dition, a second matrix is formed in which the frictional 
effect of each cell is stored. All frictions are indicated 
with a value relative to 1. Thus, for example, a friction 
of 2 would indicate that it costs twice as much as usual to 
pass through that cell. The procedure then involves a ser 
ies of passes through the matrix in which unknown cells 
which are adjacent to a cell of known distance are given a 
distance equal to the known cell plus one times the fric 
tional effect in the cardinal directions and a distance eq 
ual to the known cell plus 1.41 (square root of 2) times 
the frictional effect in the diagonal directions (Figure 
4) .
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Figure 4 : Distances grown outwards from any feature 
cell would normally result in an increase of one in 
the cardinal directions and 1.41 along the diagonals, 
However, frictional values other than 1.00 will pro 
portionately alter this relationship.
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Unlike the simple distance growth model, the concentric 
"rings" are no longer rectangular in shape, but octagonal. 
In addition, distances are accumulated directly, rather 
than as squared distances. The reason for this relates to 
the fact that there is no longer any predictable relation 
ship between distance and the difference in X or Y between 
a grid cell and its nearest target (because of the variable 
effects of friction). Errors will therefore accumulate for 
any cost distances determined along paths other than one of 
the cardinal directions or the diagonals. As a result, 
most systems, such as IDRISI (Eastman, 1987) and the Map 
Analysis Package (Tomlin, 1986) provide both a simple dis 
tance routine as well as one for calculating cost.

Given its inherent "growth" logic the cost distance 
routine discussed above shares most of the same strengths 
and weaknesses as the simple distance growth routine. 
Again, the procedure is very efficient whenever cost needs 
to be determined over a narrow buffer zone. However, it 
likewise bogs down whenever a significant region must be 
determined. For example, to calculate a continuous cost 
surface over a 512 by 512 grid could involve over 700 pass 
es through the data set to construct the required number of 
growth rings. Similarly, the need for random access can 
cause a tradeoff between image size and speed.

THE IDRISI SYSTEM APPROACH

During the development of the IDRISI CIS system, new 
procedures for the calculation of distance and cost sur 
faces were developed. The IDRISI system is a grid-based (or 
"raster") geographic analysis system that has been devel 
oped by the author at Clark University. It is also distrib 
uted by the university with over 600 registered users at 
this time.

The IDRISI system was specifically designed to operate 
in a microcomputer environment in which disk space is plen 
tiful (eg. 32 Mb), but random access memory is scarce (640 
Kb). As a result, all procedures were developed using a 
scan line approach whereby only a limited number of scan 
lines would be operated upon at one time. The procedures 
developed for the calculation of distance and cost thus 
follow a scan-line approach whereby successive rows of the 
image are read and operated upon, and then saved back to 
disk. In both cases, the procedures operate by pushing ef 
fects through the image, much like a pushbroom would be 
used to systematically clean a room. Effects then ripple 
through the image, much like water being pushed over a wet 
floor.

THE PUSHBROOM DISTANCE PROCEDURE

In the case of the simple Euclidian distance algo 
rithm (called "DISTANCE" in IDRISI), processing starts from 
the upper-left cell and proceeds along each row and then 
sequentially down the image from one row to the next. This 
is identical to the order in which the image is stored. As 
the feature image (from which distances must be calculated) 
is read, a temporary data file is output with records which 
record the distance in X and the distance in Y (as floating 
point real numbers) to the nearest target cell that is ei-
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ther above or behind it. If no feature has yet been found, 
these values are output with a special flag value. Howev 
er, once a feature is found, distance in X and Y are car 
ried along by incrementing by one for each successive col 
umn or row. When more than one feature has been found, del 
ta X and delta Y are recorded from the nearest one by com 
paring distances determined from incrementing the delta X 
and delta Y values from the cell to the left, the cell dia 
gonally above, and the cell directly above. In essence, the 
effect is one of determining the lower-right quadrant of 
all growth rings in a single pass —a kind of ripple effect 
in which knowledge of feature positions is carried along in 
the pass (Figure 5).

Figure 5 : During each pass of the pushbroom procedures, 
effects are "pushed" from regions already examined (in this 
example, from cells above and behind) into regions yet to 
be processed. The procedure thus attains directionally-ori- 
ented knowledge with each pass.

This procedure is then repeated, three further times. 
Whereas the first pass proceeded from top-left to bottom- 
right, successive passes then proceed from bottom-right to 
top-left (to determine the upper-left quadrant of the grow 
th rings), from top-right to bottom-left (to determine the 
lower-left quadrant) and finally from bottom-left to top- 
right (to determine the upper-right quadrant). These four 
passes are then overlaid with the final output being stored 
as the minimum distance calculated from the delta X and 
delta Y figures for each pass.

In its implementation, several economies can be used. 
First, as each row is processed, only that row and its im 
mediately preceeding row need be held in memory. By using 
scan-line buffers in memory, the beginning of any required 
row (regardless of the direction in which it would be pro 
cessed) would be randomly accessed, with all remaining row 
values being read sequentially in normal file order. Sec 
ond, the overlay step does not need to be done at the end, 
but can be done on a row by row basis during each pass. All 
that is required is that delta X and delta Y be recorded in 
a consistent coordinate system with negative values in the 
left and bottom quadrants. In this way, the results stored 
after each pass represent the best estimates of least-dis 
tance delta X and delta Y for all passes up to that point. 
Finally, all intermediate distance calculations can be made
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using squared distance. Only on the last pass does the 
square root need to be taken.

As a result of this procedure, distance can be calcu 
lated as a continuous surface in four passes regardless of 
the size of the image, the number of feature cells, or the 
maximum distance required. That said, it does require that 
the full surface be calculated every time. To create a buf 
fer zone, then, requires that the distance surface be re- 
classified into cells within the zone distance and those 
outside it. One might expect, then, that the procedure 
would be slower than the traditional growth ring approach 
for narrow buffer zones but faster whenever a more signifi 
cant region must be defined.

THE PUSHBROOM COST PROCEDURE

In the case of the cost distance routine (called 
"COST" in IDRISI) a somewhat similar procedure is used. 
Again, sequential passes are made through the data, but as 
few as two complete cycles are required depending upon the 
nature of the frictional effects involved. First, however, 
the issue of friction needs to be discussed.

Frictional effects present barriers that are either 
absolute or relative in nature. An absolute barrier is one 
in which the frictional effects are so high that movement 
cannot proceed through that cell. Relative barriers, howev 
er, do allow movement, albeit at an additional cost. Some 
systems treat absolute barriers as special cases. However, 
in IDRISI, an absolute barrier is indicated simply by giv 
ing that cell a friction that is impossibly high (ie., one 
that will always cause distance to be shorter by moving a- 
round the barrier than over it).

Given this concept of friction, the cost distance pro 
cedure processes the file from top-left to bottom-right and 
then backwards from bottom-right to top-left. During the 
first pass it sets all unknown cells to have an extremely 
high distance, and all feature cells to have a distance of 
zero. Additionally, like all subsequent passes, it examines 
the 8 neighbors about each cell to see if distance incre 
mented from that neighbor is less than the distance cur 
rently stored for that cell. Like the growth procedure for 
calculating cost, distance is incremented as one times the 
friction in the cardinal directions and 1.41 (square root 
of two) times the friction along the diagonals.

As long as there are no absolute barriers (ie., as 
long as going over a feature is always less expensive than 
going around it), the complete cost surface can be deter 
mined in two full passes from the position of the first 
feature. For example, if the first feature cell is found 
half-way through the image, the procedure would minimally 
require the first pass down the image (in which the first 
feature is found), the second pass back up the image, and a 
third pass back down the image until the position of the 
first feature cell is found again. When absolute barriers 
are present, however, their nature and position may disturb 
this rule. For example the barrier in Figure 6 Part A, cau 
ses no problems since information from the feature is car 
ried to all parts of the image. In Figure 6 Part B, howev 
er, the position of the barrier prevents information about 
the location of the feature from being carried to the bot-
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torn right-hand corner on the first pass. Unless a complete 
third pass is undertaken, distances will not be correct in 
the region indicated. Generally, the procedure will have 
difficulty with absolute barriers that produce maze-like 
corridors. However, for natural resource applications where 
relative barriers predominate and absolute barriers are not 
complex, three complete passes have generally been found to 
be adequate.

Figure 6 : Absolute barriers may necessitate more passes 
than the minimum required for a surface with only relative 
barriers. The absolute barrier in A, for example, poses no 
problems for the routine since the top-left to bottom-right 
and vice-versa pass orientation will carry information 
about the position of that feature to all cells in the im 
age. The barrier in B, however, will block the complete 
spread of information unless at least three complete passes 
are used.

As with the pushbroom procedure for calculating simple 
distance, the pushbroom cost procedure produces an algo 
rithm where the number of passes is independent of the max 
imum cost distance to be determined. Similarly, since the 
entire image is processed, the procedure is quite efficient 
in instances where a complete cost surface is required.

A COMPARISON OF TECHNIQUES

A comparison of the pushbroom and growth ring tech 
niques is difficult to evaluate. The strengths of one are 
the weakness of the other. For the determination of small 
buffer zones, there is little doubt that the growth ring 
procedures will be superior, since their speed is directly 
related to the size of the buffer required. However, when 
ever a full distance surface is required (cost or simple 
Euclidian), the pushbroom techniques should be faster. To 
evaluate this, the two techniques were compared by applying 
them to identical full-surface problems. The first test (to 
be called the "center" test) involved a single-cell feature 
in the center of the image while the second (to be called 
the "corner" test) involved an image with single-cell fea 
tures in each of the four corners of the image. Growth pro 
cedures typically limit their operation to the maximum sub- 
region required for processing during any one cycle. As a 
result, operations should be fastest for the "center" test 
and worst for the "corner" test. For the pushbroom proce 
dures, however, the results of these two tests will be
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identical. These two tests where then applied to both the 
simple Euclidian and cost distance problems for images 
which ranged in size from 25 x 25 cells to 175 x 175 cells. 
For all cost distance tests, frictions were set at 1.0 for 
all cells.

For the growth procedures, the "SPREAD" routine from 
the microcomputer version of the Map Analysis Package
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(Tomlin, 1986) was used. This routine incorporates both 
the simple distance and cost distance growth routines 
(which it switches between depending upon whether one spec 
ifies a friction surface to be spread "through"). For the 
pushbroom routines, the "DISTANCE" and "COST" modules from 
the math coprocessor version of IDRISI were used (a version 
still under development as of this writing). Both systems 
were run on a 20 Mhz 80386 computer with a 128 Kb disk 
cache in use. In addition, both programs accessed the 20 
Mhz 80387 coprocessor installed on the test machine. Fig 
ures 7 and 8 present the results of these two tests.

As can be seen from these results, the times for the 
pushbroom algorithms are a linear function of image size. 
For the growth routines, however, processing time can be 
seen to be exponentially related to image size with times 
for the corner test being, as expected, uniformly greater 
than for the center test. The images used in these tests 
were not large, and yet the savings in processing time af 
forded by the pushbroom techniques are immediately apparent 
— particularly for the cost distance tests. For example, 
extrapolating these results to a 1024 x 1024 image (this 
test could not be done with the Map Analysis Package since 
its maximum image size is 32,640 cells [180 x 180]), the 
pushbroom cost procedure would require 1.5 hours while the 
growth ring procedure would require almost 11.5 hours for 
the center test and 20 hours for the corner test!

CONCLUSIONS

From the above, several broad conclusions can be rea 
ched about the techniques introduced in this paper. First, 
the pushbroom procedures provide a logic compatible with 
scan-line processing. As a result, they may be applied to 
very large images even though memory may be limited (such 
as the 640 Kb address space of MS-DOS). Second, like growth 
ring procedures, they do not require explicit information 
about the location of the features from which distance is 
to be determined. Third, their speed is a linear function 
of image size. Fourth, they operate upon the entire image, 
thus making them somewhat inefficient for determination of 
small buffer zones (for which the growth ring procedures 
excel). But finally, they are substantially faster than 
the growth ring processes whenever a more substantial buf 
fer zone must be processed or a continuous distance or cost 
surface must be determined.
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