
QUADTREE MESHES

William T. Verts
COINS Department

University of Massachusetts
Amherst, MA 01003

Professor Francis S. Hill, Jr.
ECE Department

University of Massachusetts
Amherst, MA 01003

ABSTRACT

Quadtrees have long been a favorite data structure for reducing the memory storage 
requirements of bilevel images and for representing those images hierarchically. In 
general, a quadtree requires far less storage than the corresponding unencoded image. 
Unfortunately, storage requirements depend critically on the offset of the image within 
its sampling grid; quadtrees are variant with respect to translation. Reducing the 
amount of storage required by a quadtree implementation is strongly related to 
reducing its sensitivity to translation. Techniques that address these issues include 
Linear Quadtrees, Quadtree Normalization, the Quadtree Medial Axis Transform, and 
Quadtree Forests. The Translation Invariant Data structure is a related non-Quadtree 
technique based on medial axis transforms. This paper presents a translation invariant 
representation that maintains both the hierarchical properties and spatial coherence of 
each object in an image. Each image object is allocated its own quadtree, then those 
objects are interconnected with a meshwork (such as a Delaunay Triangulation) based 
on object centers. The geometry of the meshwork allows each object to be translation 
independent of all others (they may overlap), and allows the composite image to be of 
arbitrary size. The properties of this technique are explored and applications to 
cartography and extensions are discussed.

INTRODUCTION

As reviewed by Samet (Samet; 1984), there are several types of quadtrees with different 
properties and applications. For this paper we focus on the most widely known type, 
the region quadtree (hereafter referred to simply as a "quadtree").

What is a Quadtree?

Quadtrees are tree data-structures useful for storing bilevel images. Extensions that 
allow quadtrees to capture gray-scale images will be considered later. An image to be 
represented by a quadtree is an N by N square array of pixels, where N is a power of 
two (N = 2L , for some positive L). Each pixel may be either black or white; black 
pixels represent part of an image object, white pixels are background. Following 
convention, we call the two levels black and white, but in general the image element 
may have any two discrete values.

Each node in a quadtree is either a leaf node or an internal node. Leaf nodes of the 
quadtree correspond to a region of the image that contains a single color: all pixels are 
black or all pixels are white. Internal nodes, with pointers to four descendants, 
represent regions that are a mix of black and white pixels. The region covered by any 
internal node is the union of the four regions covered by its descendants (a perfect 
tiling; there are no gaps and no overlap). Other auxiliary information may also be 
stored in each node, such as a pointer to its ancestor, or some statistical information 
about the image in its subtree (a gray level representing the average color of the region 
covered by the node, for example).

406



How is a Quadtree Formed?

Most images contain some mixture of black and white areas. If the image is entirely 
black or entirely white, the quadtree captures the entire image with a single leaf node. 
Otherwise, it is divided into quarters, where each quarter corresponds to one subtree of 
the quadtree root. Each of the four descendants of the root corresponds to a quadrant of 
the image, called the North West, NorthEast, South West and SouthEast quadrants, 
respectively. The process is recursively repeated on each quadrant until the subimage 
contains a single color. See Figure 1.

Attractive Properties of Quadtrees

If the recursive decomposition of the image stops before the pixel level is reached, the 
corresponding quadtree will typically require less storage than that required by the 
original (uncompressed) image. Local coherence in the image tends to reduce the 
number of unique points that are stored.

Quadtrees also encode images hierarchically; if gray information is stored at internal 
nodes, coarse approximations of an image can be constructed by examining all nodes at 
a single level in a quadtree; every level covers (tiles) the entire image area. More detail 
appears as deeper levels of the quadtree are examined. When a branch of the quadtree 
ends in a leaf the size and color of that leaf are used in all lower levels.

Problems With Quadtrees

Normally, there are several objects in the scene captured by the image. The number of 
nodes required by a quadtree can change drastically by shifting those objects within the 
image (translation variance). Adding points to and deleting points from a image can 
also drastically change the number of nodes in the corresponding quadtree.

Image objects have no internal coherence, and may be split among several quadrants 
during the formation of the quadtree.

White areas are explicitly stored in the quadtree. Image objects are fully described by 
the black nodes of the quadtree; the white nodes are redundant. Techniques to 
eliminate or reduce the number of white nodes are outlined in the next section, but in 
general some must be stored.

It is extremely difficult to add points to an image outside of the (2N by 2N ) sampling 
grid. If there is space available the image can be shifted over to allow the new points to 
be added. Shifting will not be possible in all cases; when it is possible the quadtree will 
be affected by translation variance.

Some images can not be easily compressed. In cases where every pixel must be present 
in the quadtree (as in a checkerboard) more storage space is required than that by the 
uncompressed image, due to the overhead of the quadtree structure. In a checkerboard 
every pixel differs from its neighbors; no spatial optimization can take place.

ALTERNATIVE METHODS

Several methods have been proposed to reduce both storage and translation variance in 
representing images.

LINEAR QUADTREES

One method used to reduce the overhead associated with quadtrees is to store them as 
Linear Quadtrees (Gargantini; 1982). A linear quadtree is a pointer-less representation 
that stores only the black nodes of a quadtree. There is one entry in the linear quadtree 
for each black leaf in the full quadtree; each entry is a coded path from the root to the 
leaf. The symbols in the coded path are in a "quaternary" (base 4) code, where symbols

407



0, 1,2, and 3 stand for the NW, ME, SW, and SE descendants of a node, respectively. 
The number of symbols along the coded path corresponds to the depth of the leaf in the 
quadtree. The linear quadtree for the image in figure 1 is: 00, 010, 012, 020, 021, 03, 
10, 12, 203, 21, 30.

Linear quadtrees have some nice properties. They can be transmitted via a text-only 
link because of the ease in which the quaternary codes can be converted into ASCII 
characters. They can readily be expanded back into their original images, and it is easy 
to perform Boolean compositing operations (union, intersection, etc.) between two 
linear quadtrees.

QUADTREE NORMALIZATION

Quadtree normalization is a technique used to reduce the number of nodes in a quadtree 
by shifting the image around in the image grid. It has been shown (Li, Grosky, Jain; 
1982) that the optimum placement of an N by N pixel image can be computed in time 
O(N Log2N). Their algorithm takes an image and returns X and Y shift factors to 
obtain the optimum (minimum) number of quadtree nodes. The optimum placement of 
the image within the grid may require that the grid size be doubled (quadrupling the 
grid area).

Normalization is also used in (Chien, Agarwal; 1983) to simplify the recognition of a 
class of objects (jet planes in their paper) that may be in any size, placement, or 
orientation on an image grid. By normalizing their list of expected objects with respect 
to size, principle axes and centroids, they use the quadtree representations as "shape 
descriptors" to perform pattern matching. Note that the entire image is not converted to 
a quadtree, only objects within the image. This "decoupling" of objects from their 
background is an important tool used in the Quadtree Mesh technique described below.

QUADTREE MEDIAL AXIS TRANSFORM

Samet (Samet; 1983 & 1985) describes a technique for transforming one quadtree into 
another quadtree with fewer nodes (additional information must be present in each 
node, however). The new quadtree contains both black and white nodes as before, 
except that associated with each black node is an integer radius which indicates the size 
of the black square. The square defined by the radius may or may not cover a larger 
area than the subtree node would otherwise cover. The radius will never be smaller 
than the "natural" size of the black square. As the radius grows larger and larger, fewer 
and fewer nodes must be kept in the tree structure.

The radius may indicate that the corresponding square extends beyond the borders of 
the image, and for this reason it is assumed that all space outside of the image boundary 
is black.

Asking if a particular pixel is white or black involves more than simply traversing the 
tree; a white node in the quadtree may be white, but it may also be covered (partially or 
totally) by a nearby large-radius black node. Neighboring cells in the tree must be 
examined to see if there is any overlap.

The worst possible outcome for the Quadtree Medial Axis Transform (QMAT) is that 
the resulting quadtree will be identical to the original quadtree. The result will never 
contain more nodes than the original, but it often contains significantly fewer nodes. 
This also means that a QMAT tends to be less sensitive to shift than its quadtree 
counterpart.

QUADTREE FORESTS

In (Jones, lyengar; 1981) an idea is presented that offers space savings by breaking a 
quadtree into a list (or forest) of trees where each tree is a small section of the original 
structure.

408



A normal quadtree is labeled according to a simple recursive algorithm as follows: any 
black leaf is considered to be good; any internal (gray) node with two or more good 
descendants is also considered to be good; all other nodes are bad.

Once the quadtree has been labeled, the forest is formed by detaching subtrees at their 
highest good point from the labeled structure. If the root node has been labeled as 
good, the result is a forest of a single tree (the original structure).

Each entry in the forest contains a pointer to the section of the tree that has been labeled 
as good, and also the level and path information that serves to position the tree section 
within the original image. The path key is very similar to the quaternary codes of the 
linear quadtree.

This technique does not eliminate white nodes from the resulting tree structures, but it 
does tend to reduce the amount of white space that is stored.

The worst possible outcome for a quadtree forest occurs when the image is a kind of 
checkerboard where each and every 2x2 pixel area contains at most one black pixel. 
The quadtree is fully developed to the pixel level, and the corresponding forest consists 
of one entry for each (1x1) black pixel (Gautier, lyengar, Lakhani, Manohar; 1985).

This technique suffers from many of the same problems that normal quadtrees suffer 
from; they are shift variant and cannot take advantage of object coherence within an 
image. Shifting an image within an image grid will require a new forest to be 
developed. The list of subtrees is also presented as a linear list, with no topological 
relationships between the locations of trees in the forest.

COMPACT QUADTREES

In (Jones, lyengar; 1983) one more technique is developed to reduce the amount of 
storage with a standard pointer-based quadtree. Instead of containing in each node one 
color field, one pointer for each of the four descendants (all Nil in case of a leaf node) 
and one pointer for the ancestor, each metanode contains one ancestor pointer 
(MFATHER), one descendant pointer (MSONS), one brother pointer (MCHAIN), and 
the colors of all four quadrants; black, white, or gray. A gray value in the color list 
implies that there is a metanode attached to the descendant pointer. If more than one 
gray appears in the color list, the additional metanodes will be chained via the brother 
link off of the descendant node.

The combination of keeping all four colors and fewer pointers in each node reduces 
both the number of nodes required and the overall number of pointers.

TRANSLATION INVARIANT DATA STRUCTURE

The final technique for reducing the size of an image representation is not a quadtree 
technique at all, but it has some attributes that make it worthy of discussion. The 
Translation Invariant Data Structure (TID) (Scott, lyengar; 1986) is based on the medial 
axis transform of an image, and operates by breaking the image down into a list of 
black maximal squares along with their location and radius. The squares may or may 
not overlap, and the union of all squares is the original image.

A TTD is translation invariant by virtue of the fact that the locations in the list can be 
considered to be relative to some origin; change the origin and the objects in the image 
have moved, but without disturbing the relative positions of the objects. The locations 
in the list can also be modified according to which of several objects is moving relative 
to the others.

The storage requirements for a TID are no worse than for any of the quadtree 
techniques outlined above, and may be considerably better. Forming a TID from a

409



region that is R rows by C columns is of the order O(RC Log(Min(R,C))) (Scott, 
lyengar; 1986). See also (Gautier, lyengar, Scott; 1985).

One drawback of using TID is that any hierarchy of subimages or of objects is lost. No 
square has any priority over any other, and no coarse resolution images can be quickly 
extracted as in the case of the quadtree (or any of its variants). This technique might 
also be extended to use rectangles instead of squares for obtaining better matches of the 
objects being captured.

QUADTREE MESHES

The previous techniques all address one or more of the problems associated with 
quadtrees. What we present here is a synthesis of several of the aforementioned 
techniques, with some new considerations thrown in.

What is a Quadtree Mesh?

A Quadtree Mesh is a collection of quadtrees that may be placed anywhere in the plane, 
with a geometrical meshwork (graph) applied to the origins of the quadtrees. The 
quadtrees may overlap, and may contain conflicting information about a particular 
subregion.

In general, each quadtree contains the image of a single object or of a group of objects 
that belong together (figure 3). These object quadtrees are connected together with a 
meshwork. The meshwork may be as simple as a linear list (with all its inherent 
disadvantages) or it may be some form of optimal mesh such as a Delaunay 
Triangulation (figure 2).

Each entry in the mesh contains the following information: a pointer to the quadtree 
itself, the power of two that describes the side length of the square area covered by the 
quadtree, and the image origin (coordinates of the upper left comer of the square, for 
example). Additionally, it is very useful in geographic applications to keep the 
coordinates of the primary point of interest of the area, relative to the origin point. This 
reference point can be the origin point itself, the image center, the center of mass of the 
image object, or even some point completely outside of the image. In figure 2, the 
reference point in each object is the NorthWest pixel of the four pixels that surround the 
object center. The positions of the reference points are used when deciding how the 
quadtrees are to be connected together in the mesh.

Quadtree mesh images may be as large as necessary: because the origin and reference 
points may be anywhere in the plane, overall image size is bounded only by the integer 
precision and memory capacity of the computer system being used. The size of an 
image area is stored with each object quadtree, and that area can be as small as a single 
pixel or as large as the entire integer plane. The number of levels in each quadtree (its 
depth) can be easily determined from its size.

A quadtree mesh applied to a bilevel image effectively partitions that image into three 
values; black and white (inside at least one object quadtree), and unknown (outside all 
object quadtrees). For most purposes, unknown can be considered equivalent to white.

Advantages of a Quadtree Mesh

Quadtree meshes eliminate the problem of variance with respect to translation. Moving 
an object from once place to another entails changing only its origin point and does not 
affect the structure or contents of the corresponding object quadtree.

Each object quadtree need be only as large as necessary to capture its image object; 
although there is some white space stored, that amount of white space is relatively 
small. The implementation of the object quadtrees could be as Quadtree Forests, 
Normalized Quadtrees, QMATs, Compact Quadtrees, or any other method that reduces

410



the overhead of storing a single quadtree. Each object quadtree could use a different 
method of storing the image depending on which method optimizes the image object 
best. The entries in the quadtree mesh would then need a field describing which of the 
methods is used in the corresponding object quadtree.

Four objects are shown in figure 3, partitioned according to how they would be 
described with quadtrees. Objects 1 and 2 are 4x4 regions that require object quadtrees 
of one leaf each (because object 1 is identical to object 2, only one copy needs to be 
constructed; the corresponding mesh nodes can share a single instantiation of the 
quadtree). Object 3 is a 4x4 region that requires an object quadtree with 10 leaves, and 
object 4 is a 7x7 region (normalized to the lower right corner of its 8x8 square) that 
requires an object quadtree with 40 leaves. Together, regardless of their placement 
within an image, the four object quadtrees require 52 leaves (51 if the quadtrees for 
objects 1 and 2 are shared). The two 16x16 images in figure 2 contain the four objects 
in different places. A quadtree describing the left image requires 142 leaves, and a 
quadtree describing the right image requires 103 leaves.

Searching

When looking for the color of a particular pixel, a search uses the meshwork to find the 
cluster of interest. The configuration of the meshwork can simplify many problems in 
geometry.

If object quadtrees describe areas of similar sizes, then finding the "correct" quadtree 
entails traversing the mesh to find the closest point of interest to the search pixel. If a 
Delaunay Triangulation is used as the mesh geometry, then finding the closest point is 
trivial: choose any point in the mesh as the current point, examine all points that 
neighbor (are connected to) the current point and set the current point to the one closest 
to the search pixel, and repeat until there are no closer points. The quadtree associated 
with the resulting mesh point is searched for the pixel value. By the properties of 
Delaunay Triangulations, the resulting mesh point will be one of the three points on the 
perimeter of the triangle enclosing the search pixel if the pixel is inside the convex hull 
of the mesh space, and it will be the closest hull point if the search pixel is outside. 
More than one object quadtree may contain the pixel, and a conflict between quadtrees 
may have to be resolved. Conflict resolution is addressed in the next section.

Once a pixel has been found, searching for adjacent pixels is fairly straightforward; if 
the new pixel is inside the current (just searched) quadtree, the same quadtree can be 
used. If it is not in the current quadtree, it may be in a "nearby" quadtree. The mesh is 
used to find the neighboring object quadtrees in the direction of the new point and those 
quadtrees are searched for the new point.

Extracting an image from the quadtree mesh is accomplished by searching for the 
colors of all pixels in a specified rectangular region. Extracting a coarse image in a 
quadtree mesh is possible because of the hierarchical nature of each object quadtree.

A Content Addressable Parallel Processor (Verts, Thomson; 1988) can be used to speed 
up search by assigning one processor to each quadtree mesh node. Each processor 
would contain the coordinates of the origin and the exponent of two which defines the 
side length N (which together can be used to determine the bounding box of the object 
quadtree), and the reference point (point of interest). To search for the color of a pixel 
all processors would compare, in parallel, the coordinates of the pixel with the 
bounding box of the quadtree assigned to that processor. Any processors not covering 
the desired pixel drop out of the search. If there is only one responder then the 
corresponding quadtree is searched for the pixel. If more than one responder remains 
then several quadtrees overlap the pixel and a conflict may exist.

411



Resolving Differences in Overlapping Regions

Conflicts arise when two or more object quadtrees differ on the color of a particular 
pixel. Several techniques can be used to resolve differences. The simplest technique is 
to always return black for the pixel color. This is in effect taking the logical-OR of the 
overlapping regions; since at least two differ, one or more must be black. Another 
method would be to return the value encoded by that object quadtree which is closest to 
the search pixel (closest according to the mesh reference point).

Although the images are bilevel, the gray (internal) nodes of the quadtree may store an 
average that is between the black and white values. If so, and if a coarse resolution 
image is desired, the color of a particular pixel may be computed as the average of all 
the different values defined by overlapping object quadtrees. Alternatively, the darkest 
of the competing definitions could be chosen.

Deriving a Quadtree Mesh

Extracting the optimum quadtree mesh from a static image is the subject of ongoing 
research. Identifying unique, connected objects in the image is relatively simple, but 
the optimum mesh may involve breaking an object into pieces and assigning an object 
quadtree to each piece. For example, objects 1 and 2 overlap in the left-hand image of 
figure 2. An object quadtree applied to the combined figures would require a minimum 
of 13 leaves (normalized in an 8x8 grid), but object quadtrees for each object require 
just one leaf apiece.

Building the mesh is much simpler if the objects in an image are known beforehand. 
For example, constructing a Delaunay Triangulation of a set of N points in the plane 
has been shown to be of order O(N Log N) (Preparata, Shamos; 1985).

Problems With the Quadtree Mesh Technique

There are several problems with the Quadtree Mesh technique. Conflicting quadtrees 
have already been addressed.

When extracting the appropriate object quadtree from a static image, it is possible to 
over-cluster or under-cluster the image. Over-clustering can occur when there is one 
object quadtree for each black pixel in the image, regardless of object coherence within 
the image. Under-clustering can occur when the mesh consists of a single object 
quadtree, regardless of the complexity or number of objects in the image. The optimum 
quadtree mesh may indeed turn out to be one object quadtree for each pixel or one 
object quadtree for the entire image; the process for extracting the object quadtrees and 
deriving the mesh must be very careful.

If all object quadtrees in a mesh are similar in size, or are of a known maximum size, 
then it is fairly easy to identify those mesh neighbors that overlap a search pixel. If one 
object quadtree (on the periphery of the mesh, say) overwhelms the area encompassed 
by the entire rest of the mesh, men that object quadtree needs to be considered in all 
search problems, yet its reference point and position in the mesh indicate that it should 
be rarely involved in neighborhood searches.

EXTENSIONS

Gray Scale Quadtrees

Bilevel images are simple representations of areas: a pixel is either inside an object 
(black) or outside (white). Realistic images are not simply bilevel but are composed of 
shades of gray. When constructing the quadtree for a gray scale image it is difficult to 
determine when the four leaves of a quadrant can be replaced by one larger leaf; it is 
unlikely that there will be many areas in an image that all have the same gray level. If

412



exact match is used, all four pixels in an area must have the same gray value to be 
collapsed into one.

Thresholding is a simple technique to convert a gray region into a black and white 
region; any pixel above a certain level is changed to black, anything below that level 
becomes white. This separates figures from their backgrounds in high contrast images, 
but too much information is lost for this to be useful in general.

In (Gonzalez, Wintz; 1987), a region is considered to be "homogeneous" (all one color) 
if at least eighty percent of the pixels in that region are within two standard deviations 
of its average gray level. If the homogeneity constraint is met, the region is assigned 
the average as its gray value.

An effective way to generate gray quadtrees is to specify an allowable error value such 
that the pixels in a region are considered to be all one color if no pixel deviates from the 
average by more than the error number. With an error value of one, for example, 
collapsing four leaves into one requires that all leaves differ from the average by at 
most one (plus or minus).

Gray Quadtree Meshes

Meshes can be formed from gray object quadtrees fully as easily as with bilevel object 
quadtrees. The same techniques apply when resolving overlaps as when dealing with 
the gray (internal) nodes of bilevel quadtrees. When two or more gray object quadtrees 
conflict, the color of the search pixel can be determined as either the average of the 
overlapping values, or as the darkest. Unknown areas (outside all mesh areas) are 
treated as white or as a "special" value not in the normal image.

An Application of Gray Quadtree Meshes

As a test problem, suppose that the "image" is a digital terrain model, where the "pixel" 
values represent elevations. The regions encoded by object quadtrees are areas that 
have known elevations; areas outside all object quadtrees have unknown elevation. The 
problem is to determine if a line of sight exists between two points in the model. A 
three dimensional variation of the Bresenham digital stepping algorithm can be used to 
determine all elevations along the line of sight between the two points. The next step is 
to examine each point to see if the elevation of the line of sight is above or below the 
elevation of that point in the model. Each successive point search uses the mesh 
neighborhood of the previous search. The hierarchical nature of the object quadtrees 
can be used to quickly derive a coarse model of the terrain, and a measure of the error 
used in extracting the quadtree from the true image will form a "fuzzy" region within 
which the true elevation is guaranteed to lie.

Octree Meshes. Gray Octrees and Beyond

The three dimensional analog to the quadtree is the octree. An octree mesh consists of 
(possibly overlapping) volumes connected together with a three-dimensional 
meshwork. A meshwork with properties similar to the two dimensional Delaunay 
Triangulation would define a set of tetrahedra, where any sphere that passes through all 
four non-coplanar vertices contains no other vertex.

Octrees need not be restricted to bilevel voxels (the three dimensional equivalent of a 
pixel that indicates whether a volume is filled or empty). A gray octree can be 
constructed in the same manner as a gray quadtree. Instead of color, the differing 
values can represent density, temperature, pressure, or some other multiple-valued 
phenomenon associated with volumes.

The meshwork, the data structures for decomposing space hierarchically, and the gray 
extensions to those data structures all have analogs in dimensions higher than three. 
While such structures are difficult to visualize, the mathematics are consistent.

413



CONCLUSIONS

The Quadtree Mesh representation has many of the benefits of quadtrees with few of 
the drawbacks. Multiple, overlapping quadtrees connected together in a meshwork, 
where each quadtree may be optimized for its subimage, maintain the translation 
independence and hierarchical representation of each object.

BIBLIOGRAPHY

Chien, C, Agarwal, J. K., 1983. A Normalized Quadtree Representation: Computer 
Vision. Graphics and Image Processing. Vol. 26 #3 (June 1984), pp. 331-346

Gargantini, I., 1982. An Effective Way to Represent Quadtrees: Communications 
ACM. Vol. 25 #12 (December 1982), pp.905-910

Gautier, N. K., lyengar, S. S., Lakhani, N. B., Manohar, M., 1985. Space and Time 
Efficiency of the Forest of Quadtrees Representation: Image and Vision Computing. 
Vol. 3 #2 (May 1985), pp. 63-70

Gautier, N. K., lyengar, S. S., Scott, D. S., 1985. Performance Analysis of TID: IEEE 
Computer Society Proceedings. Conference on Computer Vision and Pattern 
Recognition. San Francisco, CA, June 19-23,1985, pp. 416-418

Gonzalez, R. C., Wintz, P., 1987. Digital Image Processing (second edition), Addison- 
Wesley, Reading, MA

Jones, L., lyengar, S. S., 1981. Representation of a Region as a Forest of Quadtrees: 
IEEE Computer Society Proceedings. Conference on Pattern Recognition and Image 
Processing. Dallas, TX, August 3-5,1981, pp. 57-59

Jones, L., lyengar, S. S., 1983. Virtual Quadtrees: IEEE Computer Society 
Proceedings. Conference on Computer Vision and Pattern Recognition. Washington, 
DC, June 19-23,1983, pp. 133-135

Li, M., Grosky, W. I., Jain, R., 1982. Normalized Quadtrees with Respect to 
Translations: Computer Graphics and Image Processing. Vol. 20 #1 (September 1982), 
pp. 72-81

Preparata, F. P., Shamos, M. I., 1985. Computational Geometry. Springer-Verlag, New 
York

Samet, H., 1983. A Quadtree Medial Axis Transform: Communications ACM. Vol. 26 
#9 (September 1983), pp. 680-693

Samet, H., 1984. The Quadtree and Related Hierarchical Structures: ACM Computing 
Surveys. Vol. 16 #2 (June 1984), pp. 187-260

Samet, H., 1985. Reconstruction of Quadtrees from Quadtree Medial Axis Transforms: 
Computer Vision. Graphics, and Image Processing. Vol. 29 #3, March 1985, pp 
311-328

Scott, D. S., lyengar, S. S., 1986. TID - A Translation Invariant Data Structure for 
Storing Images: Communications ACM. Vol. 29 #5 (May 1986), pp. 418-429

Verts, W. T., Thomson, C. L., 1988. Parallel Architectures for Geographic Information 
Systems: Technical Papers. 1988 ACSM-ASPRS Annual Convention. Vol. 5 (GIS), St. 
Louis, MO, March 13-18, 1988, pp. 101-107

414



nnnnnn nnnn nnnn
Bilevel Image

Quadtree

Figure 1: An image and its quadtree.

3 JL

Figure 2: Four objects and their mesh, before and after object motion.

& 2

Ofc-je-ct 4

Ofa-jeo * 3

Figure 3: Object Quadtree partitions of the objects in figure 2.

415




