
RULE-BASED CARTOGRAPHIC NAME PLACEMENT WITH PROLOG

Christopher B. Jones
Anthony C. Cook

Polytechnic of Wales
Pontypridd

Mid Glamorgan
CF37 1DL, UK

ABSTRACT

Positioning text on maps is a complex task subject to
numerous rules which may vary according to the purpose of
the map and who is making it. Ideally therefore, automated
systems for name placement should be flexible in terms of
the rules used to control them. Because the logic
programming language Prolog is essentially rule-based, it
appears to be appropriate for developing such systems. In
practice, it has proved possible to use the language for
writing relatively short and clear programs to find
non-conflicting positions for names and for specifying rules
for selecting names and potential label positions. An
experimental Prolog name placement system has been developed
and has been used to place names on a variety of maps. The
system provides access to a spatial database which
facilitates the creation of rules which depend upon spatial
relationships between names and other map features.

INTRODUCTION

The results of cartographic name placement can vary greatly
according to the theme, purpose and style of the map onto
which names are to be placed. In general, name placement
may be regarded as subject to sets of rules which differ
from one type of map to another, as well as between
cartographers and cartographic organisations. The concept
of rules in name placement was integral to Imhof's (1975)
review of the subject and it has been incorporated in
automated systems such as those of Freeman and Ahn (1984)
and Pfefferkorn et al (1985). A major problem with
implementing automated rule-based systems is to find a way
of programming the rules such that they can be changed
easily to meet user requirements. With this objective in
mind, the logic programming language Prolog (e.g. Clocksin
and Mellish, 1981) is of particular interest, as it uses
rules and associated facts as its basic constructs, which
are referred to as predicates.

In being a declarative, rule-based language, Prolog appears
to offer potential for programming name placement at a
relatively high level, provided that the cartographic rules
can be translated into the syntax of Prolog. Thus the
appeal of logic programming for name placement is the
possibility of writing programs which consist of
descriptions of rules rather than the algorithms for
implementing them. Ideally these programs should be short,
readable and easily amended. It is important to realise in
this context that some of the apparent advantages of Prolog
derive from the fact that the language uses a built-in
inference mechanism to deduce solutions which obey the facts
and rules which specify the problem. This may be contrasted

231

with conventional procedural languages (such as Pascal,
Fortran and C) which work by executing a set of instructions
based on an algorithm which specifies how to solve a
problem.

Name placement can be thought of as a combination of two
processes, one of which is concerned with resolving
conflicts between name positions (or labels), while the
other is concerned with the selection of names and their
associated label characteristics and positions. The
remainder of this paper falls into two parts, corresponding
to these two processes. In the first part a logic
programming strategy is described for finding combinations
of name positions which minimise conflict between names and
between names and unrelated features. This is confined here
to the problem of labelling point-referenced features and is
based on Jones (1987). The second part relates to the
problems of selecting names and of generating trial or
candidate labels which satisfy rules of text configuration
and of graphic association between the text and the named
feature. Examples are given for name placement problems
which include point, line and area-referenced names.- They
are based on recent research by one of the authors who has
developed a name placement system which uses Prolog for
conflict resolution and for implementing rules for selecting
names and appropriate labels (Cook, 1988). This system,
called NAMEX, uses a spatial database which may be accessed
from Prolog by means of calls to subroutines which are
written in Fortran.

PLACEMENT STRATEGIES FOR AVOIDING CONFLICT

In order to find a set of name positions which satisfies
rules of conflict avoidance with other names and features,
it is necessary to provide mechanisms for generating trial
positions for each name to be placed and for detecting
whether any given position results in conflict. Let us
assume that there is a Prolog predicate,
find_trial_position, which on being called returns an
horizontal trial position for a label (Name) defined by
location co-ordinates X, Y in a raster image co-ordinate
system and by its Length, which is measured in pixels. This
predicate could take the following form:

find_trial_position(Name, X, Y, Length).

The presence of horizontal labels which have been placed can
be recorded with predicates of the form

label_at(Name, X, Y, Len).

where X and Y are the co-ordinates of the start of a row of
pixels of length Len occupied by the label. Depending on
the height of the text, several such predicates could be
asserted for each label. For simplicity of explanation, we
assume here that only a single row is required. To ensure
that point symbols can be uniquely identified, so that a
label's own symbol can be distinguished from others, the
presence of symbols can be recorded in terms of rows of
pixels defined by predicates of the form

symbol_at(Name, X, Y, Len).

232

where the parameters are as before. The presence of all
other map features can be recorded in the Prolog database
using additional fact predicates. One possible method is to
encode map features in a run length format, as described in
Jones (1987). Overlap or conflict detection can now be
performed by a second predicate (no conflict) which is
proven to be true if no conflict is foun3 between the given
position and any other label and, if necessary, any other
map feature. It can do this by examining the positions of
labels already placed and, if appropriate, by searching the
database to identify the presence of other map features
which could be affected by this possible placement. It may
be defined in terms of a rule which first attempts to prove
that there is an overlap, in which case it fails, otherwise
it is true. For the purpose of testing for overlap with
other labels, this can be expressed as follows (note that
the symbols /* and */ are used for delimiting comments,
while :- means 'if and , and ; mean 'and' and 'or'
respectively):

no_conflict(Xs, Ys, Search_length, Ignore):-
/*~ look for names or symbols on given scan line */

(label at(Name, X, Ys, Length) ;
symboT_at(Name, X, Ys, Length)),
not(Name=Ignore), /* should name or symbol be ignored */

/* now test for overlap */
Search_end is (Xs+Search length-1), Search_end >= X,
Data_end is (X+Length-1)", Xs =< Data_end,
!, fail. /* fail completely if any overlap found */

/* succeed only if not possible to prove overlap */
no_conflict(_,_,_,_).

This definition can also be used in situations where all map
features must be considered, provided that the trial
positions given by the predicate find trial_position have
already taken account of them. SucH an approach has the
merit of performing all spatial data searches, for potential
feature conflicts, once only in a preprocessing stage,
rather than in the course of conflict resolution.
Alternatively, as described in Jones (1987), the logic
program database may be loaded with a complete description
of the map, which can be searched when the no_conflict
predicate is called. This may however introduce repetition
of searches.

A relatively simple strategy can now be applied in which,
for each name, a predicate place_label uses the above
predicates to generate a possible position which is tested
for overlap. If the position is found to be acceptable, it
is recorded in the logic program database by means of a
predicate record_position which asserts label_at predicates.
When placing several names however, it may be impossible to
place an individual name because other previously placed
names are in conflict with it. Such a situation induces
backtracking in which one or more previously placed labels
will be removed and alternative trial positions used, before
going forward to try again with the label which could not be
placed. To enable this backtracking, the predicate for
placing a label calls a predicate (clear_previous_label)
which retracts from the Prolog database any previously
asserted label_at predicates for that name, before any other
is recorded. The place_label predicate may be described as
follows:

233

place_label(Name):-
find_trial_position(Name, X, Y, L),
no_conflict(Name, X, Y, L),
cl^ar previous_label(Name),
recorcf_position(Name, X, Y, L).

Placement of a group of labels can be done by applying the
place_label predicate to all labels to be placed. One way
of handling the group of labels is to put them in a list.
Lists in Prolog can be referred to in terms of the first
item in the list (Head) and the remainder of the list
(Tail). When a list is handled in this way, it is
symbolised by [Head|Tail] where the square brackets
represent the boundaries of a list. Thus a predicate
place_group, which attempts to place all names in the group,
can be described in the following manner:

place_group([]). /* terminating condition (empty list) */
place_group([Head_name|Tail]):-

place_label(Head name), /* place first name in list */
place~group(TailJ. /* place remaining names */

This predicate is defined recursively, such that when the
first label has been taken from the head of the list of
labels, it is passed to the predicate which attempts to
place it (place_label) before passing on the list of
remaining names to the original predicate (place_group). If
place_label cannot find a suitable positionV and hence
fails, the place_group predicate backtracks to the last
situation in which an alternative action was possible. Such
a possibility would occur when another trial position was
available for a previous name. Note that if a previous
label cannot find another position, it will induce further
backtracking to its predecessor in the list of names. The
logic program will fail only when all combinations have been
exhausted without success. Such complete failure can
however be averted by deleting a name (such as the last one
which failed to be placed, if all names have equal
importance).

Reducing Search Time

When there are many names to be placed, program run times
may be unacceptably long. Solution times can however be
reduced by breaking the problem into sub-problems defined by
groups of names which are in potential overlap with each
other. This was done by Freeman and Ahn (1984), who
referred to these groups as connected components. Further
reduction in search time can be obtained by sorting trial
label positions in order of decreasing difficulty, as also
found by Freeman and Ahn. Possible measures of difficulty
for a particular name include the number of trial positions
available and the number of neighbouring names which are in
potential overlap.

RULE-BASED SELECTION OF TRIAL LABELS

The techniques for conflict avoidance, as described in the
previous sections, are based on the assumption that a
mechanism exists whereby trial label positions are
generated, either in advance or in the course of seeking
non-conflicting positions. The process of selecting trial
positions is one which has a major bearing on the style and,

234

in many cases, the legibility of the resulting map. Trial
positions are selected according to factors such as
orientation, the relationship between the label and the
feature which it annotates, and its relationship to other
map features. The relationship between a label and its
associated feature depends upon the class of feature
concerned. For points, the label is typically placed
immediately adjacent, to the right or left, above or below
or at intermediate positions to these. Line labels might be
placed on the line or to one side or the other of the
feature, or perhaps lie across it. Area labels may be
positioned inside a region at some orientation which could
be related to the shape of the area, or they might be
outside, adjacent to the edge, such as when the area is too
small to accommodate the label.

The combination of factors which determine trial positions,
along with issues of whether or not particular features
should be labelled at all, provide enormous scope for
controlling the design of a map. In an automated system,
these factors should therefore be subject to rules which can
be adjusted by the cartographer. In the NAMEX name
placement system (Cook, 1988), an attempt has been made to
demonstrate how, with the aid of logic programming, such
rules can be implemented in a manner which allows them to be
changed relatively easily. In the present implementation,
such changes still depend in many cases upon a knowledge of
Prolog programming but, in the ideal situation, it is
possible to envisage a user interface which allowed rules to
be changed via a natural language dialogue.

Before looking at examples of Prolog rules in NAMEX, it
should be noted that the system is a hybrid one in terms of
programming language, in that a number of low level
functions, concerned with tasks such as accessing a spatial
database and detecting overlap, have been implemented in
Fortran using subroutines which can be called from Prolog.
Of particular significance for the implementation of
spatially defined rules are functions which determine the
presence of specified map features within a given vicinity
(e.g. a circle or rectangle). It should also be remarked
that the NAMEX conflict resolution strategy differs somewhat
from that which was described in the previous section.

Label Selection in NAMEX

Rules for generating trial labels in NAMEX fall into three
categories. The first is concerned with the selection of
names for which label positions are sought, the second
defines label configuration, which relates to text size,
orientation and position relative to the named feature,
while the third is concerned with validation of the selected
configurations. Validation ensures that selected
configurations obey rules of association between labels and
adjacent features. Thus there may, for example, be
priorities and limits controlling what features may be
overlapped, and what distances there may be between labels
and nearby features.

The extent to which rules must be provided for the initial
selection of names depends upon the application. In some
situations, it may be desirable to attempt to plot all
names, in which case selection may depend upon either an

235

initial analysis of the map space and name density (as in
Langran and Poiker, 1986), or perhaps on a system of
priorities or ranks which must be considered when the
conflict resolution strategy encounters difficulties (at
present, the NAMEX conflict resolution strategy can delete
names irrespective of their cultural importance). There are
also situations in which it is appropriate to specify rules
which govern selection of features to be named according to
the theme of the map and on the basis on map scale.

At a very simple level of selecting major feature types, a
predicate name_select(Fsn,Ftype) has been used, in which Fsn
is a unique feature serial number, and Ftype is the feature
type (point, line, area). In order to ensure that, say, all
point features are to be selected, the predicate
name_select(_,point) may be asserted. If the feature name
under consideration has the corresponding value for Ftype
then, when the predicate is called for the given name, it
will succeed (i.e. be regarded as true). More
sophisticated rules which take account of scale have been
used in the creation of a series of Moon maps in which
craters are labelled if their size exceeds a threshold which
is determined by an empirical function dependent upon map
scale. For example, a predicate for selecting primary
craters on maps of scale smaller than 1:15,000,000 may be
defined as follows:

select_crater(primary, Scale, Fsn):-
Scale > 15000000,
crater diameter(Diameter, Fsn),
generaTise_crater_rule(Limit, Scale),
Diameter >= LimitT

The predicate crater_diameter accesses the NAMEX database to
determine the diameter of feature Fsn, while the
generalise_crater_rule predicate calculates the diameter
threshold Limit, on being given a value of Scale. The map
in Figure 1 was created using such a generalisation rule.

Many of the rules of configuration selection may be
implemented quite simply, since there may often be a direct
and fixed relationship between feature type and the label's
size, orientation and position relative to the feature. For
example, control over the orientation of labels can be
achieved with a predicate
select_label_orientation(Fsn,Ftype,Fcode,Orientation), in
which Fcode specifies a particular class of feature of
specified type, and Orientation may be either horizontal or
diagonal. Once a diagonal orientation has been selected,
the angle employed is calculated as a function of the
disposition of the feature. Normally the first three
parameters would be predetermined for a given label.
Calling the predicate will then result in Orientation being
instantiated with an an appropriate value. In the case of a
rule which specified that all point-referenced labels were
to be plotted horizontally, it would be sufficient to use
the predicate

select_label_orientation(Fsn,point,Fcode,horizontal).

Thus, on calling the predicate, all point features will be
given a horizontal orientation. The orientation of line
labels may often be subject to a variety of rules. If it

236

was required to set labels to be horizontal for all roads
with feature code 'a_road r , it could be done with the
predicate

select_label_orientation(Fsn,line,a_road,horizontal).

If however the orientation of 'a_road' labels was to be a
function of direction, the predicate would have to access
the database to examine the properties of the specified
feature. The following rules would set the orientation to
be horizontal if the line was orientated more steeply than
40 degrees, and otherwise diagonally.

select_label_orientation(Fsn,line,Fcode,Orientation):-
select_line_label_orientation(Fsn,Fcode,Orientation).

select_line_label_orientation(Fsn,a_road,Orientation):-
compute_angle_of_line(Fsn,Angle),
select_orient_by_angle(Angle,Orientation).

select_orient_by angle(Angle,diagonal):-
"Angle =< 10.

select_orient_by_angle(Angle,horizontal):-
Angle > 40.

Rules of this sort were used in placing major ('A') road
names on the road map in Figure 2. Similar rules have been
implemented for controlling the orientation of area labels,
as in Figure 3. Here it was required to determine the label
orientation according to the degree of elongation and the
orientation of the area itself, both of which were found by
calls to standard NAMEX predicates.

An important aspect of name placement is that of maintaining
a clear association between the label and the feature it
annotates. As an example, the predicate valid_position,
described below, ensures that a point label does not overlap
too many other features or lie too close to any adjacent
point symbols, other than its own.

valid_position(Fsn,Ftype,Fcode,Pos_number):-
/* get location of label at given position number */

read_label_data(Fsn,Ftype,Fcode,Pos number,
~~ ~~ X, Y,Angle, LengtE,Height, Prox),

/* examine underlying pixels in rectangle centred on X,Y */
raster_rectangle_totals(X,Y,Angle,Length,Height,

Number_of_pixels,Total_pixel_value),
Ratio is realof(100 * Total_pixel_value /

Number_of_pixels),
/* find current acceptable threshold value" for ratio */

dense space_threshold(Thresh_dense),
/* test ratio against threshold */

Ratio =< Thresh_dense,
/* enlarge label region by Prox to include buffer zone */

enlarge label(Length,Height,Prox,Newlength,Newheight),
/* test for aBsence of illegal features in label region */

raster_rectangle_features absent(X,Y,Angle,
Newlength,NewEeight,[city,town,village]).

The predicates called by valid position are not defined
here. Some of them make calls to lower level predicates
which access the contents of the NAMEX database. Note that

237

the total pixel value found by raster_rectangle totals is
obtained from the sum of priority weighted raster Bit planes
representing map features, and that the test for illegal
pixel values in the extended region of the label depends
upon the pixels of the label's feature having been
temporarily masked. The logic described here was used in
creating Figure 2.

Comparable techniques to these can also be used to good
effect in validating on the basis of other cartographic
criteria which require spatial search. An example occurs in
the county map (Figure 3), in which settlement names away
from the coast have been placed either inside or mostly
inside the county to which they belong. The rule was
formulated with reference to searches in the rectangular
regions formed by the co-ordinates of the named settlement
and the centre of the label itself. Substituting the
feature type 'county boundary' into the list of features to
search for in the raster rectangle_features_absent
predicate, it was possible to test whether a county boundary
lay between the label centre and its point symbol. If the
county boundary was also a coastline, then the rule was not
applied. To keep a label entirely in its own county, the
search rectangle could be enlarged appropriately.

CONCLUSIONS

The logic programming language Prolog has been used for
writing rule-based programs which perform cartographic name
placement. The built-in inference mechanism of the language
makes it possible to produce relatively short and readable
programs which find positions for groups of names by obeying
simple rules of conflict avoidance. Rules for the selection
of labels to be placed, and the selection of suitable label
configurations, have also been implemented in a name
placement system (NAMEX) which provides access to a spatial
database for the purpose of evaluating potential label
positions. NAMEX has been used to place names on a variety
of maps subject to quite different rules. Useful future
developments of the system include more sophisticated
conflict resolution strategies governed by rules controlling
the deletion of names in crowded areas, and a high level
user interface allowing rules to be encoded via a natural
language dialogue.

ACKNOWLEDGEMENTS

The authors are grateful for financial and material
assistance from the Ordnance Survey, Southampton. ACC was
supported by an SERC studentship.

REFERENCES

Imhof, E., 1975, "Positioning Names on Maps", The American
Cartographer, Vol. 2, No. 2, pp. 128-144.

Clocksin, W.F. and C.S. Mellish, 1981, Programming in
Prolog, Springer-Verlag.

Cook, A.C., 1988, "Automated Cartographic Name Placement
Using Rule-Based Systems", PhD Thesis, Polytechnic of Wales.

238

Freeman, H. and J. Ann, 1984, "AUTONAP - An Expert System
for Automatic Map Name Placement", Proceedings International
Symposium on Spatial Data Handling, Zurich,pp.544-569.

Jones, C.B., 1987, "Cartographic Name Placement With
Prolog", manuscript, Dept. Computer Studies, Polytechnic of
Wales.

Langran, G.E. and T.K. Poiker, 1986, "Integration of Name
Selection and Name Placement", Proceedings Second
International Symposium on Spatial Data Handling,Seattle, __ 50_64>

Pfefferkorn, C., D. Burr, D. Harrison, B. Heckman, C.
Oresky and J. Rothermel, 1985, "ACES: A Cartographic
Expert System", Proceedings Auto-Carto 7, Washington DC, pp. 399-407. ————————————————————

IA I r K E M
ERTREGf
VAN DE GRAAFF

VjO/ O EEUt(EMHO
)T HOT1 S OR /^~^

()/ APOLLO

Figure 1. Far side of the Moon

239

Figure 2. Road map (using Ordnance Survey data)

Figure 3. County map (using Ordnance Survey data)

240

