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ABSTRACT

Vector maps that are plotted using a globogram type of 
projection may have linework that becomes crowded when 
approaching the map's horizon line on the hardcopy plot. 
To reduce this linework clutter on the globogram map, the 
map can be passed through a point reduction algorithm to 
thin the points. Point reduction algorithms, whether local 
or global in nature, typically are two-dimensional 
geometrical processes, that operate egually on all of the 
map's digital lines. In the globogram case, this can result 
in too much point reduction in the central, foreground 
areas of the map and too little point reduction at the 
extreme areas near the horizon line, where the oblique 
'viewing angle' increases the density of points.

To solve the above problem, this paper will propose and 
demonstrate an implementation of a three dimensional method 
of point reduction using a modified local point reduction 
algorithm. The proposed methodology and algorithm will 
utilize a variable or sliding tolerance criteria for the 
point reduction based on a selected point's proximity to 
the horizon line of the globogram map.

BACKGROUND

In digital mapping, point reduction algorithms are applied 
to maps to remove excess or unnecessary points while 
maintaining the basic caricature or shape of the lines. The 
application of these routines may be required due to the 
reduction in scale of a map. Added benefits of point 
reduction include reduced plotting time, reduced storage 
space of the coordinate pairs, faster vector processing and 
faster vector to raster conversion (McMaster, 1987).

Over the last twenty years, several algorithms have been 
developed to perform automated point reduction on digital 
maps. A review of automated line generalization and point 
reduction by McMaster (1987) contained discussions of 
several point reduction algorithms. These algorithms use 
two dimensional geometrical techniques to remove points 
from two dimensional maps. The current research sought an 
improved technique for point reduction for the particular 
problems associated with the globogram projection.
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Figure 1. ORIGINAL MAP - 3445 POINTS

Figure 2. GLOBOGRAM MAP - 3445 POINTS
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THE GLOBOGRAM PROBLEM

The globogram is a two-dimensional representation of the 
three-dimensional map model. Viewed orthogonally, a globogram 
map gives the appearance of being projected on a sphere, 
since it is defined in three dimensions and plotted in two 
dimensions. A map defined in spherical coordinates (R,0, ) 
or cartesian coordinates (x,y,z) can be rotated in any of the 
x, y or z directions, and subsequently plotted using the 
x and y coordinates on a globogram projection. The problem 
of line clutter occurs when the z coordinates (in cartesian 
space, the x,y plane is the map sheet plane) of the map 
boundaries approach zero, i.e. the map boundaries approach 
the horizon line. Figure 1 shows the original map of Canada, 
using the Lambert Conformal projection. Figure 2 shows the 
globogram of the original map (original map digitally placed 
on a 400 mm radius sphere, then rotated 58 degrees about the 
Y axis). Both maps were plotted from the same source basefile 
containing 3445 coordinates. Due to the nature of the 
globogram projection, northern portions of the Canadian 
coastline become crowded and the coordinates become more 
densely clustered. Less detail is required in these northern 
areas, and in the general case, less detail is required as 
map areas approach the horizon of the globogram projection.

TWO-DIMENSIONAL POINT REDUCTION METHODS

Two sequential methods of two-dimensional point reduction may 
be employed in an attempt to alleviate the point density of 
the lines. These methods are:

A. performing a two dimensional point reduction on the 
original map's x,y coordinates, and then projecting 
the map onto a globogram,

B. projecting the original map onto a globogram, and 
then performing a two dimensional point reduction 
on the globogram.

Any of the local or global point reduction algorithms are 
suitable for these two methods; however, these algorithms 
follow similar methodologies: point reduction is performed 
equally on all the lines that comprise the map due to a 
controlling set of fixed tolerance criteria. These criteria 
may be a tolerance distance, a perpendicular distance or 
deviation, a field of view angle or deviation, or any other 
combination of threshold values. The common factor of these 
algorithms is that this threshold tolerance value is a fixed 
quantity, usually supplied by the user. Applying these 
algorithms to two dimensional maps generally produces good 
results everywhere on the point reduced map, depending on the 
algorithm used and the selected threshold tolerances. 
However, the globogram is a special case that requires 
varying degrees of point reduction that is not provided with 
traditional two-dimensional methods, as seen in the following 
examples.
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Figure 3. 50% REDUCTION - 1720 POINTS

Figure A. GLOBOGRAM OF 50% REDUCTION - 1720 POINTS
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Figure 5. GLOBOGRAM MAP - 3445 POINTS

Figure 6. 50% REDUCTION OF GLOBOGRAM - 1721 POINTS
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TWO-DIMENSIONAL POINT REDUCTION FOR GLOBOGRAMS

A comparison was made between three two-dimensional point 
reduction algorithms:

1. the proximity method
2. the Jenks modified angular method
3. the perpendicular/proximity method

using two reduction factors, 32.5% and 50%, for the two above 
sequential methods. After examining the output, it was 
determined that the perpendicular/proximity method produced 
the best results in this particular case, and that the 50% 
reduction demonstrated the most dramatic effects of the 
algorithm.

Method 'A' Globogram Point Reduction

Figure 3 is the output of the perpendicular/proximity 
algorithm (50% reduction) as applied to the original map, 
while Figure 4 shows the globogram of the 50% reduction map. 
There is a noticeable difference in the point density of the 
globogram of the point reduced map when compared with Figure 
2. However, this reduction in the point density of the lines 
occurs everywhere on the globogram map, and crowding is still 
evident in the northern sections. Also, undesirable thinning 
of the lines has occurred in the southern portions of the 
map.

Method 'B' Globogram Point Reduction

Figure 5 is the globogram of the original map while Figure 
6 shows the results of the perpendicular/proximity algorithm 
(50% reduction) as applied to the globogram of the original 
map. Again, there is a noticeable difference in the point 
density of the reduced globogram when compared with Figure 
2. However, as in method A, the reduction in the point 
density occurs everywhere on the globogram map, and the point 
crowding in the northern sections has not sufficiently 
improved, while excessive point reduction has occurred in the 
southern sections.

THE SLIDING TOLERANCE POINT REDUCTION

The globogram case requires the application of a selective 
point reduction algorithm that removes more points at the 
critical areas near the horizon line, and removes relatively 
fewer points in the less oblique foreground areas.

Since the critical areas of a globogram projection are lines 
that approach the horizon line, where the z coordinates of 
the vertices approach zero, point reduction solutions were 
sought which made effective use of this z coordinate. The z 
coordinates would be used to evaluate the globogram line's 
proximity to the globogram horizon line. As a line approaches 
the horizon, convergence of its vertices increases due to the
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oblique viewing angle. To increase the map's legibility, the 
elimination of a greater number of points in the horizon 
areas is required.

Global point reduction algorithms, such as the Douglas- 
Peucker algorithm (Douglas and Peucker, 1973) are not 
suitable since they operate on a complete line. The group of 
local processing point reduction algorithms, where a point 
is tested for redundancy relative to its immediate 
neighbours, was determined to be appropriate and easily 
adaptable for this application. Instead of being fixed, the 
threshold value for each algorithm was allowed to vary from 
a user-defined minimum value to a user-defined maximum value, 
following a function that was based on the z coordinate of 
the test vertex.

Three sliding functions, that varied the range of the 
tolerance values were tested:

Theoretical Function
1. (R-Z)/R * Tolerance
2. 0/90 * Tolerance
3. SIN(O) * Tolerance

Actual Function Used 
(R-Z)/R * Tolerance 
[ARCCOS(Z/R)]/90 * Tolerance 
SQRT(1-(Z /R )) * Tolerance

where Tolerance was a user-defined tolerance range. A typical 
formula for computing the actual value of the tolerance 
value, using function 1 is:

TOLVAL = MINTOL + [(R-Z)/R * (MAXTOL-MINTOL)] 
\____/ \__________/
sliding 

function
tolerance 

range

where TOLVAL = computed tolerance value for the test vertex 
MINTOL = user-defined minimum tolerance value 
MAXTOL = user-defined maximum tolerance value 

R = radius of the globogram sphere 
Z = z coordinate of the test vertex

XY PLANE

R

Z AXIS

Figure 10. GEOMETRY OF SLIDING FUNCTIONS
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Figure 7. GLOBOGRAM OF 50% REDUCTION - 1720 POINTS

Figure 8. 50% REDUCTION OF GLOBOGRAM - 1721 POINTS

Figure 9. 50% GLOBOGRAM 3-D REDUCTION - 1723 POINTS
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Each of these functions has its own unique characteristics, 
being linear, transcendental and quadratic respectively, 
resulting in different responses or sensitivities on the 
tolerance values. All the sliding functions range in value 
from 0 to 1 for Z ranging from R to 0. This results in 
minimum tolerance values and point reductions when z=R and 
maximum tolerance values and point reductions when z=0. 
Figure 10 gives a representation of the geometry involved in 
each of the sliding functions, and shows the position of a 
point on the sphere where the computed value of TOLVAL is 
halfway between MINTOL and MAXTOL. The choice of sliding 
function is not unique, and the final results would clearly 
depend upon the amount of curvature and rotation in the 
globogram.

RESULTS

The perpendicular/proximity point reduction algorithm, using 
the linear function (R-Z)/R to vary the tolerance values, 
provided the best results, at a 50% reduction in total 
points, for the Canada example. An illustration of this 
three-dimensional technique can be seen in Figures 7 through 
9. For comparison purposes, Figures 7 and 8 repeat the 
previous Figures 4 and 6 respectively. Figure 9 shows the 
results of the adapted algorithm. A significant reduction in 
the number of points has occurred in the northern sections 
of the map, near the horizon, whereas much less reduction has 
occurred in the areas near the foreground. When comparing the 
three techniques, it is evident that the sliding tolerance 
method gives significantly better results in areas requiring 
the most point reduction, leaving the foreground areas 
relatively intact. Because of the utilization of the sliding 
tolerance criteria, this approach is superior to the other 
two methods.

CONCLUSION

The usage of conventional two-dimensional algorithms for 
enhancing the display of globograms can be significantly 
improved by incorporating the 3-D sliding tolerance 
methodology. The utilization of the z dimension as a 
controlling parameter in determining the tolerance for 
conventional two-dimensional point reduction algorithms 
allows for varying degrees of point reduction depending on 
the relative position of the map on the globogram sphere. 
This adaptive technique can be successfully applied to any 
of the 'local' two-dimensional point reduction algorithms, 
resulting in a more satisfactory presentation of the 
globogram map.

Future directions and research include evaluations of 
characteristics of different sliding functions as adapted to 
various local two-dimensional point reduction algorithms, the 
display of map projection error as a function of the line 
detail of the map, and the analysis of the perception of 
visual density of globograms
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