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ABSTRACT

It is fact universally acknowledged that discrete computing 
systems are ill-equipped to process vector-based spatial 
information: inexact line intersection calculations and 
similar geometric (co-ordinate) operations can not readily 
guarantee consistent graphical structures (topology). It is 
proposed here that use of Voronoi diagrams, especially 
euclidean-distance nearest-object Voronoi diagrams of points 
and line segments in the plane, permits a general-purpose 
conversion of geometric information to a graphically- 
structured form amenable thereafter to graph traversal and 
other fundamental discrete operations appropriate to the 
computing environment employed. While the divide-and-conquer 
approach is efficient, object-at-a-time insertion and 
deletion techniques build on the current adjacency structure; 
preserve it and are consistent with database updating 
methodology; and direct comparisons can be used between one 
and two-dimensional linked-list operations. This approach 
permits the handling of spatial information in a manner 
consistent with computer strengths - by using linked-list, 
graph-traversal and tree-search algorithms well known to 
computing science to answer a wide variety of basic 
geographic queries, including interpolation, spatial ordering 
and medial-axis transforms.

INTRODUCTION

This paper is intended to review the applications of Voronoi 
diagrams to a wide variety of spatial adjacency problems, 
with particular emphasis on applications in automated 
cartography and geographic information systems. Topics 
covered include: what is a Voronoi diagram? What is the 
current research in this field? What can they do for us? How 
may they be implemented - firstly involving the 
implementation of general polygon structures and their duals, 
and secondly referring explicitly to Voronoi polygons rather 
than general polygons? Reference is made to the significance 
of boundaries in these general polygon structures, and then 
to the construction techniques for Voronoi diagrams. A 
comparison is made between the construction of general two 
dimensional triangular networks and the more conventional one 
dimensional linked-lists and trees familiar to computing 
science. Having provided a general background, discussion 
then covers a variety of applications, including 
interpolation, skeleton encoding, and spatial ordering.
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WHAT ARE VORONOI DIAGRAMS?

Consider a set of objects (points) in the plane. Each of 
these objects may be considered to have a sphere of 
influence, defined as the region which is closer to that 
object than to any other object. The result of this zoning 
activity is to partition the plane into a set of polygonal 
regions, each region associated with a particular object. For 
points in the plane these polygonal regions can be shown to 
be convex polygons. The result of this process is referred 
to as a Voronoi tessellation.

While the mathematical definition is straightforward it must 
be emphasized that Voronoi diagrams are not at all abstract 
entities. They may be created by the use of blotting-paper 
and wicks, the magnetic fields of adjacent magnets, etc. (see 
Morgan, 1967). Thus Voronoi diagrams are closely related to 
real physical processes, which simplifies both the 
visualization of the technique and the potential for the 
modelling of these physical processes.

Considerable research activity has been dedicated to studying 
Voronoi diagrams in the last few years. While theoretical 
algorithms are the particular specialty of the field of 
computational geometry, the applications aspects have not yet 
been fully explored. The efficient construction of point 
Voronoi diagrams in the euclidean plane has been well known 
for some years, but other particular Voronoi diagrams - using 
other metrics, furthest-point Voronoi techniques, cases with 
boundaries, and other special applications - are still 
subjects of ongoing research. The major sources of 
information on the topic are the textbook by Preparata and 
Shamos (1985), and the ACM/SIGRAPH annual proceedings on 
computational geometry. The approach has various 
characteristics, which include the use of "divide and 
conquer" methods to obtain the most efficient construction 
techniques. These result in methods that are not necessarily 
the easiest to implement on a computer, and in many cases 
have not been implemented. Finally, the use of divide and 
conquer techniques implies the construction of the diagram 
for the whole data set at one time, rather than permitting 
the updating of the data set in the process of the 
application.

VORONOI DIAGRAMS AND CO-ORDINATE GEOMETRY PROBLEMS.

Problems in co-ordinate geometry arise frequently in computer 
implementations of a variety of science and engineering 
applications. These are associated with the fact that the 
specification of geometric x,y co-ordinates for some object 
being described does not automatically provide information 
about the relationships between line segments or objects 
themselves. Thus in both automated cartography and computer 
aided design the specification of object co-ordinates is not 
sufficient to link these defined objects together to form a 
coherent whole. As a general statement, co-ordinates do not 
of themselves produce relationships, that is: graph 
theoretical structures relating objects in space. This is due 
partly to the finite resolution of computer word lengths 
representing co-ordinates of intersection points etc., but
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primarily because the two branches of mathematics involved 
have very little overlap in the problems described here. 
Graph theoretic techniques require that relationships 
(adjacency relationships in particular) be previously 
defined, while the straightforward definition of co-ordinates 
in conventional geometry provide no information of itself 
about the linkage between points and objects in space.

It is suggested in this paper that the use of a Voronoi 
generating process may simplify the transition from 
co-ordinate based information to graph theoretic (adjacency) 
based structures. Once graph theoretic structures are 
available many otherwise difficult processes may readily be 
implemented on the discrete machines available for computing 
problems. The rest of this paper will therefore be concerned 
with the storage of polygons in a computing environment, the 
specific issues of creation and storage of Voronoi polygons 
in the computer, and applications that ensue from the 
availability of the resulting structures.

THE STORAGE OF GENERAL POLYGON INFORMATION

Given any map composed of polygons, several things should be 
noted. Firstly, the two dimensional plane is entirely covered 
by adjacent polygons: there are no gaps. Thus every polygon 
has an adjacent polygon, with special care being taken at 
the boundaries of the map. Secondly, in the two dimensional 
plane there are only three basic classes of objects: points 
or nodes (zero-), arcs (one-) and polygons (two-) dimensional 
objects. Thus a polygon may be defined by its several 
boundaries, by its several nodes, which occur at the 
junctions between boundaries, and also by the several 
adjacent polygons that bound it. Line segments or arcs may 
be defined in terms of the two end points (nodes), and also 
the "left polygon" and "right polygon". Information about 
nodes could include all of the arcs or boundary segments that 
meet at it and in addition all of the polygons that 
themselves meet at that node. A useful summary of the options 
for storing the relationships between polygons, arcs and 
nodes may be found in Gold (1988a).

A polygon set is in fact a graph. A graph is formed of 
regions, edges, and nodes, which are directly related to the 
polygons, arcs and nodes previously discussed. Graph nodes 
have a valence associated with them - that is, the number of 
edges that meet at that node. In a two dimensional planar 
graph, such as a map, most nodes will have a valence of 3. 
All nodes with a valence of 4 or more may be reduced to nodes 
of valence 3 by inserting dummy line segments of zero or 
near-zero length into the data structure. Thus if we can 
restrict ourselves to nodes of valence 3, all polygons may 
be represented by the dual triangulation. The dual of a graph 
is formed by replacing all regions (polygons) with nodes; 
replacing all nodes with regions; and replacing all edges 
(boundaries between adjacent polygons) with new edges that 
connect the "centres" of each original region. Thus polygons 
convert to nodes, nodes convert to triangles (since they are 
all of valence 3) and edges convert to new edges.
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Figure 1 shows a polygon set and the associated dual 
triangulation. Polygons A through F are represented in the 
dual by nodes A through F. Each triangle edge represents or 
shows the existence of an original polygon edge, and any 
property associated with that original polygon-polygon 
boundary may now be associated with the new triangle edge. 
Thus in a computer structure the triangle edge may point to 
the x,y co-ordinates forming the irregular polygon-polygon 
boundary and may also inform the user of the kind of boundary 
involved. It should be noted that the boundaries need not be 
simply hard lines as is conventionally represented on a map, 
but may involve other properties such as fuzziness, 
faintness, convolutedness, or even flow between adjacent 
polygons. Thus a boundary - and here a triangle edge - 
represents a relationship between two adjacent polygons. 
This relationship may be of any type required by the 
application. Thus if a soil type map is known to have 
gradational boundaries between soil types, as is usually the 
case, and if the soil scientist can describe this gradational 
relationship, the data structure is capable of preserving 
this information for future use.

Thus a triangulation structure permits the storage of 
information concerning polygons, arcs and nodes. A 
triangulation is one appropriate data structure, since in the 
two dimensional plane nodes are usually of valence 3. Thus 
a triangulation network is a relationship storage device. 
One of the advantages of preserving triangulations rather 
than polygon sets in the original form is that 
triangulations have a known number of vertices and edges, 
simplifying internal storage concerns in a computing system. 
One possible way of storing a triangulation data structure 
is to preserve the three adjacent triangles and the three 
vertices for each triangle record (see Gold et al., 1977). 
In that particular case triangle edges are not themselves 
preserved. Another alternative is to preserve the 
triangulation as a series of edges rather than as a series 
of triangles: each edge record consists of a "from" node , 
a "to" node and the next edge record clockwise (or 
anti-clockwise) from each end node. This particular data 
structure is also of fixed length, and hence of simple 
implementation, but in addition detailed information about 
the boundary itself between any two polygons may readily be 
added. See Gold (1988a) for more details on the selection of 
data structures. While both of these data structures, as well 
as variants, are appropriate formats for the storage of the 
dual triangulation of a polygon set, the line record format 
appears to be better where arbitrary boundaries are involved, 
whereas the triangle record format, while not preserving any 
specific boundary information, seems to be particularly 
appropriate to the storage of Voronoi diagrams, where polygon 
boundaries are not arbitrary but are implicit in the 
relationship between the two adjacent map objects. As will 
be seen, in the preservation of Voronoi polygons in a 
computer data structure, the storage of the junction between 
the three boundary segments is the most useful property to 
preserve, and one of these "circumcentres" exists for each 
triangle.
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THE IMPLEMENTATION AND STORAGE OF VORONOI POLYGONS

We have discussed the storage of general polygons and 
some of the possible data structures to use. As previously 
mentioned, the triangulation data structure appears 
appropriate for the preservation of Voronoi polygons in 
particular. Figure 2a shows a simple set of points in the 
plane, their associated Voronoi polygons (solid line), and 
the resulting dual triangulation (dashed line). In this 
particular case, rather than using divide and conquer 
techniques to generate the whole Voronoi diagram at once, 
individual points are inserted one at a time into the data 
structure. In Figure 2a, a new data point, marked X, is to 
be inserted into the data set. Figure 2b shows the results 
of inserting the new point and in consequence creating a new 
polygon at the expense of the previously existing polygons. 
Figure 2c shows the portions of the previous polygons 
"stolen" by the new Voronoi polygon. This simple insertion 
technique is theoretically less efficient than divide and 
conquer methods, but it is simple to implement and cost- 
effective for all but the largest data sets. In addition, the 
ability to insert and delete individual points is crucial in 
many applications. Figure 3 shows the result of generating 
the Voronoi polygons, and dual triangulation, for a test data 
set from Davis (1973).

The objects inserted into the two dimensional plane need not 
be restricted to points. Figure 4 shows the case where 
individual points and line segments are inserted. Some 
increased complexity therefore exists - in particular, while 
the boundary equidistant between two adjacent points is a 
straight line, and the boundary between two adjacent line 
segments is also a straight line, the boundary between a 
point and a line segment forms a parabola.

In order to insert a line segment into a Voronoi diagram, 
first of all the two end points must be inserted as described 
previously, and then the connecting line segment itself 
added. This is consistent with the fact that connecting the 
two end points adds additional information to the map. The 
Voronoi region for a line segment therefore has boundaries 
that consist of straight line segments and parabolic 
segments, and it need not necessarily be convex. Figure 5 
illustrates the insertion of a line segment into the Voronoi 
diagram.

Figures 4 and 5 also show the triangulation of the Voronoi 
regions. Point objects are represented as solid dots and line 
objects are represented as dashed lines. Line segments are 
considered as distinct objects from their end points. Since 
the Voronoi regions are in fact polygons the result is a 
triangulation as described previously for general polygons. 
Since the Voronoi regions are entirely defined by the 
relationships between points and points, points and lines, 
or lines and lines, there is no need to save explicit 
boundary information and thus no need to implement the line 
segment data structure previously described. On the other 
hand, the junctions between line segments and parabolic 
segments are of considerable importance, and as one of these 
junctions is associated with each triangle, a triangulation
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based data structure appears appropriate for this problem. 
In a simple point-Voronoi diagram the junction of these three 
boundaries is at the circumcentre of the particular triangle. 
When the Voronoi diagram is extended to include line segments 
a similar definition holds: the centre is at an equal 
distance from the three objects at the vertices of the 
triangle. Thus an appropriate circle would pass through any 
vertex that consisted of a data point, and would be tangent 
to any vertex consisting of a line segment. Nevertheless, 
all triangles in this structure have a circle centre and 
radius representing the maximum distance one can get away 
from each of the three vertex objects. For further details 
see Gold (1988c).

In conclusion boundaries are implicit between objects of 
known type, therefore Voronoi boundaries need not be 
explicitly preserved. The intersections of Voronoi boundaries 
define the available valid relationships. Thus the dual 
triangulation data structure with "circumcentres" should be 
preserved to define adjacency relationships based on 
euclidean distance.

RELATIONSHIPS BETWEEN GENERAL POLYGONS, DUAL TRIANGULATIONS 
AND ONE DIMENSIONAL LINKED LISTS.

Fundamental operations on one dimensional conventional linked 
lists include the following basic operations. Firstly: an 
initialize process, usually involving setting up two end 
nodes with values selected to be outside the range of the 
data to be inserted. Secondly: an insert operation, 
permitting the insertion of a new node between two previous 
nodes. These nodes, in a linked list application such as 
simple sorting, would each consist of a left pointer, a right 
pointer, and a value field - probably containing one of the 
numeric values to be sorted. Assuming that the linked list 
is to be maintained in ascending numerical order, a search 
technique must be available to determine whether a particular 
numerical value has either already been inserted, or 
alternatively to determine the values immediately below and 
immediately above the new value to be inserted. This search 
algorithm could involve either a simple "start at one end and 
keep looking until you get there" process, or a more 
elaborate binary search. A third necessary linked-list 
operation would be a delete procedure, permitting the 
deletion of a particular value no longer desired, and the 
elimination of the associated node in the linked list. 
Finally, in some cases (e.g. a bubble sort) a "switch" 
operation may be of value. This operation switches the values 
of two adjacent nodes. All of these operations, with the 
exception of the search, are of O(n) efficiency. The 
efficiency of the search technique itself may vary from 
O(n**2) for a simple minded "read the whole list", to 0(n log 
n) for either a binary search technique or else a tree search 
- if it has been considered desirable to include a 
hierarchical tree structure above the one dimensional linked 
list.

In the case of a set of general polygons (not specifically 
Voronoi) we can create an equivalent set of operations. An 
initialization operation consists of defining a large
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exterior polygon, such as a map boundary, enclosing all 
subsequent data. This region will be divided into a space- 
covering polygon set as data is inserted or deleted. A 
partially-completed polygon set is shown in Figure 6a. The 
dual triangulation is also illustrated. Note that each node 
in the dual triangulation represents one of the original 
polygons, and each triangle in the dual triangulation has one 
associated node (with valence 3) in the original polygon 
diagram.

In Figure 6b the central polygon has been divided into two 
by a new boundary. The result of this operation is to create 
one new boundary segment and two new 3-valence nodes. Thus 
in the dual triangulation representation two new triangles 
have been created. This "split" process may be replaced by 
a reverse "merge" process. In this case a boundary between 
two adjacent polygons is deleted, and hence two polygons 
become one In the dual triangulation representation two 
adjacent triangles are deleted, and the two nodes on their 
common boundary are merged into one.

We may therefore consider the equivalent of a simple insert 
process in a one dimensional linked list to be a split 
process in the two dimensional polygon context. Thus rather 
than "inserting" a new node we are splitting one node into 
two. This is appropriate since in the polygon problem it is 
assumed that the whole plane is tiled in polygons. The 
equivalent of a one dimensional delete process is the merge 
process described above for the polygon problem. Thus for 
any general polygon set we have the equivalent of insertion 
and deletion in a one dimensional linked list. In addition, 
this is readily implemented in the dual triangulation of the 
space-covering polygon set.

An additional property of this insert/split approach is that 
it allows us to subdivide space in a hierarchical tree 
fashion without imposing any specific restrictions on the 
shape of any particular set of polygons. Thus the insert (or 
split) process involves the taking of the initial polygon, 
let us call it AB, and splitting it into two sub-polygons A 
and B. In terms of conventional tree structures this produces 
a binary tree with all polygons at the leaves. The 
delete/merge process takes two leaf polygons A and B, deletes 
them both and replaces them with their common parent polygon 
AB, which itself becomes a leaf.

The tree structure previously suggested is directly relevant 
to problems concerning the order of efficiency of the search 
process. The simplest one dimensional search technique is 
merely to "walk" through the linked list starting at one end. 
until the appropriate value in the ordered list is found. For 
multiple searches it is reasonable to continue the new search 
from the point of termination of the previous one. This local 
walk technique can be applied to a triangulation in two 
dimensions. For details see Gold et al. (1977). This walk 
through a triangulation in two dimensions is approximately 
of O(n**1.5), as opposed to O(n**2) for the one dimensional 
case. The walk in two dimensions is based on geometric 
criteria - thus it is readily used in the case of Voronoi 
polygons and dual triangulations, where the geometric
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relation between the triangulation and the dual polygons is 
straightforward, but the approach is less obvious where the 
dual triangulation is of a general polygon set, the 
boundaries are arbitrary and it is unclear where the 
appropriate "centres" of the original polygons should be.

Nevertheless for the Voronoi polygons a simple geometric walk 
is readily implemented and reasonably efficient under most 
circumstances, since data on input is usually naturally 
ordered by the process of acquiring the data in the first 
place: thus there is a tendency for the next data point to 
be inserted into the data structure to be close to the 
previous one. Where a higher order of efficiency is desired 
the binary tree structure previously mentioned may be 
implemented. Note that no rules have been given as to 
precisely when two polygons should be split or merged. This 
would be a function of the particular mapping information 
desired. It is therefore flexible, but does require 
implementation of splitting and merging rules based on 
knowledge of the data. It is nevertheless the same technique 
- whether applied to simple hierarchical subdivision by map 
sheet, subdivision by census district, county and higher 
order region, or any other desired natural hierarchical order 
to the polygon data.

The last of the processes to be described is the "switch" 
operation. Any two adjacent triangles will have a common 
boundary. The quadrilateral formed by these two triangles may 
be divided into two triangles either in the original fashion 
or by connecting the two opposing points - thus changing the 
diagonal of the quadrilateral. This was previously described 
in Gold et al. (1977). The switch operation is equivalent to 
the switching of two nodes in a one dimensional linked list. 
However, in order to decide whether a pair of triangles 
should be switched in any particular case, an appropriate 
criterion should be used. The most appropriate criterion is 
generally accepted to be the Voronoi. On this basis triangles 
perturbed by nearby network modifications may be tested to 
see if an adjustment (switch) is required to preserve the 
Voronoi property. Thus the testing and switching of all edges 
of the triangulation that have been modified by insertion or 
deletion, or by the switching of nearby edges, permits the 
ready preservation of the Voronoi property for any object 
insertion or deletion. This operation can be guaranteed to 
be a local process - in fact on the average the insertion of 
a new data point can be expected to cause 6 switch operations 
to be performed. Thus no insertion or deletion in one corner 
of a map sheet can have any influence on remote portions of 
the triangulation.

We have thus shown for the case of the general triangulation 
the relationships that exist between the basic operations of 
initialize, insert, delete, switch and search in the one 
dimensional linked list case well known to computer science, 
and the two dimensional triangulation case which may be 
applied to any space-covering polygonal set. In the special 
case of the Voronoi polygons the switch operation can 
maintain the Voronoi criterion subsequent to any perturbation 
of the network by insertion or deletion processes.
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APPLICATIONS

The primary function of the implementation of the Voronoi 
tessellation for a set of points or line segments is to allow 
coordinate geometry problems to be approached from the graph 
theoretic viewpoint. Some specific applications are given.

Figure 7 is taken from Gold and Cormack (1987). The ordering 
techniques were first described in Gold et al. (1977). If a 
triangulation has been formed by the previously mentioned 
techniques (not necessarily Voronoi) it is possible to 
perform operations upon triangular elements of this network 
in a spatially consistent order. In the example shown a 
viewpoint labelled X is located near the centre of the 
triangulated data set. After the first triangle has been 
processed there remain three adjacent triangles. Each of 
these may be processed in turn. These subsequent triangles 
have either one or two adjacent triangles that are further 
away from the viewpoint than they are themselves. By 
appropriate geometric tests, described in Gold and Cormack 
(1987), it is possible to process each triangular element in 
a nearest-to-furthest order with respect to the specified 
viewpoint. Thus, since the triangulation may be ordered, so 
also may the objects from which the Voronoi polygons, and the 
dual triangulation, were produced. This permits the general 
solution of a variety of adjacency problems. Hidden line 
problems may be processed in a front to back or back to front 
ordering with respect to the eye position by following this 
procedure. For pen plotter applications pen movement may be 
minimized by processing the map in an order based on the 
triangular patches formed by the triangulation process. 
Radial searches outwards from the viewpoint are readily 
performed using the technique, permitting easy retrieval of 
all data objects close to the desired starting location. This 
graph theoretic approach is particularly desirable where a 
selection of neighbours is required, as in interpolation.

In interpolation problems, such as traditional contouring or 
perspective view modelling, it is difficult to generate an 
interpolated surface that will always honour every data 
point, whatever their distribution. Figure 2a shows a simple 
Voronoi tessellation of a small point data set. Figure 2b 
shows the result of inserting a new data point, marked X. 
This new point however is not a "real" data point, but simply 
a sampling location where an elevation value is desired. 
Figure 2b shows the new polygonal region carved out from the 
Voronoi polygons of the real data points themselves. Figure 
2c shows the areas of each of these polygons "stolen" by the 
Voronoi polygon of this new dummy point. These stolen regions 
are of considerable interest, as they permit straightforward 
interpolation between arbitrarily distributed data points. 
The relative areas stolen from adjacent data points are used 
as weighting functions to generate a weighted average of 
these adjacent points, to form the estimated elevation at the 
point marked X. A particular strength of this approach is 
that only neighbouring data points which have a finite 
positive area stolen from them are defined as neighbours to 
the interpolation point X. Thus no discrepancy exists between 
the selection of the neighbouring points and the weighting 
function used upon them (see Gold, 1988b, 1989).
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As an additional application, Figure 8 shows a map of a small 
village region. A variety of roads, houses, streams etc. are 
displayed. In any geographic information system it is 
frequently desirable to be able to determine which map 
entities are adjacent to which other map entities. An example 
would be to determine which houses are adjacent to a 
particular road. It is of course possible to generate Voronoi 
zones about each object defined on the map. First of all it 
is necessary to break up certain features such as roads into 
individual segments - this is a cartographic problem not 
addressed in this paper. The result of constructing the 
Voronoi 'diagram of the major objects on this map is also 
shown. On the basis of this Voronoi diagram it is possible 
to make reasonable statements about whether a particular 
house, shed, etc., is adjacent to a particular road, or to 
another building. The answer to this question would be "yes" 
if the Voronoi regions of the two objects under query are 
adjacent to each other and have a common boundary. Indeed 
the extent of the common boundary between them could be a 
measure of the adjacency itself. Note that in a few cases, 
e.g. where a stream goes under a road, nodes with an order 
of 4 as opposed to an order of 3 may be found on the Voronoi 
diagram. As before, this Voronoi diagram can be expressed as 
a dual triangulation. For details see Gold (1987).

A final application concerns the skeleton encoding of 
polygons. Figure 9a shows a polygon with one concave vertex. 
A "wave-front" analogy has been used to show the growth 
inwards of parallel bands along the boundary itself. Figure 
9b shows the result when these wave-fronts have met and 
completely engulfed the original polygon. Each line segment 
on the original boundary now has associated with it an 
interior region bounded by edges formed where the various 
wave-fronts met. These regions are the interior components 
of the Voronoi region for each of the line segments of the 
boundary (and as such have a valid dual triangulation). In 
the case of the single concave vertex shown, an interior 
region is defined for the vertex itself, and not merely for 
the line segments involved. (Figures 4 and 5 illustrate point 
and line Voronoi diagram generation.) This interior boundary 
between a convex vertex and the opposing line segment 
generates a parabolic interior segment to the polygon 
skeleton. (This example is taken from Brassel and Jones, 
(1984), where "bisector skeletons" perform a similar 
operation.) This polygonal skeleton is of value as a graph 
theoretic description of the general shape of the polygon, 
and as such (in raster mode) is frequently used in character 
recognition applications. In the field of cartography the 
technique is of value as a label or name placement aid.

CONCLUSIONS

It is hoped that this paper has shown the basic relevance of 
the Voronoi tessellation as an aid in converting co-ordinate 
geometric problems to graph theoretic approaches. On this 
basis a large variety of applications may be attacked using 
a common set of tools. The basics of the approach have been 
described along with appropriate data structures, and several 
applications have been outlined. Other applications are 
expected to be developed in the near future.
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Figure 1. a) Polygon set.
b) Possible boundary properties.
c) Relationship triangulation (dual graph)

Figure 2. a) Point-Voronoi diagram and dual triangulation.
b) Introduction of point X.
c) Areas stolen from neighbouring regions.
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Figure 3. a) Elevation data from Davis (1973).
b) Resulting Voronoi regions and triangulation.

Figure 4. Voronoi regions for points and line segments,

Figure 5. a) Point Voronoi regions.
b) Insertion of a line segment,
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Figure 6. a) General polygon set with triangulation.
b) Result of splitting P(ab) into P(a) and P(b)

Figure 7. Triangle ordering from viewpoint X,
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Figure 8. Map, showing map-objects and Voronoi regions,

Figure 9. a) Polygon, showing wave-front propagation.
b) Internal Voronoi regions of polygon boundary,
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