
THE ARCHITECTURE OF ARC/INFO
Scott Morehouse 

Environmental Systems Research Institute
380 New York Street 

Redlands, California

ABSTRACT
Arc/Info is a generalized system for processing geographic 
information. It is based on a relatively simple model of 
geographic space - the coverage - and contains an extensive 
set of geoprocessing tools which operate on coverages. 
Arc/Info is being used in a wide variety of application 
areas, including natural resource inventory and planning, 
cadastral database development and mapping, urban planning, 
and cartography.

The design philosophy and architecture of Arc/Info is 
described. This includes the spatial data model, the spatial 
operators, the engineering of the system as a practical 
software product.

INTRODUCTION
This paper provides a general overview of the philosophy and 
architecture of the Arc/Info geographic information system. 
I begin with an overview of the basic approach to CIS system 
design used by Arc/Info, then review briefly the geographic 
data model implemented in the system. Any real system is 
more than just a data model, so the basic geoprocessing tools 
associated with Arc/Info are Introduced. Finally, geographic 
information systems are complex software systems. I discuss 
some of the software engineering philosophy and methods that 
have proved successful in creating Arc/Info.

GENERAL ARCHITECTURE AND APPROACH

There are two basic approaches in CIS development today - the 
Spatial DBMS approach and the Spatial Tool Kit approach.

In the spatial DBMS approach, the CIS is considered to be a 
query processor operating on a spatial data base. Users and 
applications get information by passing a request to the 
query processor, which navigates the data base to find the 
answer, which is then returned to the application. In this 
way, details of the data base implementation are hidden from 
the application, and other useful functions like concurrency 
control and crash recovery can be managed. To be useful to 
the user, however, such a query processor must be very 
sophisticated - knowing polygon overlay, thematic mapping, 
attribute modelling,etc. In practice, query processors often 
simply retrieve geographic data using spatial and attribute 
keys, leaving more complex geographic modelling and 
cartographic tasks for the application programmer. Some data 
modelling problems can be solved within the data base. For 
example, the polygon overlay problem can be solved by 
overlaying all data as it is added to the data base. In this 
way, all queries involving multiple data layers can simply 
become attribute based queries.

266



The spatial DBMS approach typically involves an interactive 
database editor which is used to load and edit the spatial 
data base. It establishes the necessary topology, spatial 
indexes, and between layer links necessary for the query 
processor.

This is the classic Data Base Management System approach to 
the CIS problem: "How can we extend the (choose one: 
network, relational, object-oriented) data base approach to 
support geographic information?" This approach is popular in 
recent CIS designs (see, for example [Frank, 1982], [Herring, 
1987], [Bundock, 1987], and [Carlwood et al, 1987]). It is 
also pursued by computer scientists seeking to extend 
relational and object-oriented data base management systems 
[Stonebraker, 1986].

The principal drawback of the spatial DBMS approach is the 
difficulty of application development. If the problem cannot 
be solved by the query processor, then an application program 
must be written that extracts the relevant information and 
does the geoprocessing problem itself.

The other basic approach is the application development or 
tool box approach. The central paradigm of this approach is 
"application oriented tools operating on objects". It is 
more closely related to work in document processing and 
software development environments (e.g. UNIX) and to fourth 
generation languages than to the DBMS approach. In the tool 
box approach, we define objects, which are pieces of 
geography, together with a set of geoprocessing operators for 
these objects (see figure 1).

Geographic Information System

User
Spatial 
Operators

Figure 1: The CIS as a Geoprocessing Tool Box

Objects are stored in a data management system which provides 
for storage on disk, backup, concurrency control, etc. 
Operators (tools) are organized into a high level language 
system which provides a standardized user interface and a 
mechanism for combining tools into higher level tools.

Unix is one example of the tool box approach. In unix, the

267



objects are files. A file is simply a string of bytes with a 
name. Files are organized into directories and stored on 
disk. Files can contain any sort of data, although some 
tools may assume files contain text, object code, or 
executable code. The operators are unix commands. Most unix 
commands act as file processors, reading in files and writing 
transformed files. Commands are organized by the command 
shell. The shell provides the user interface along with a 
mechanism for writing command procedures (shell scripts). 
Unix is a powerful text processing and software development 
system because complex operations can be easily created by 
combining generic predefined operations.

There are other examples of the tool box approach in mapping 
applications. Most image processing systems follow this 
approach with the images as objects and image transformations 
as being the operators. The Map Analysis Package (MAP) is a 
geographic information system where the objects are grids and 
the operators are grid cell analysis commands [Berry, 1987].

These systems illustrate some features that are important 
attributes of the tool box approach.

Uniform Objects. If operators are to be combined 
flexibly, they must input and output data in the same format. 
It should be possible to take the output from any operator 
and use it as input to any other.

Object Management. There must be a data management system 
for objects which allows them to be organized and managed 
with security, backup capabilities, distributed data base 
functions, etc.

User Interface. There must be an environment which 
manages the user interface to operators and allows new 
operators to be easily created from existing ones.

General Operators^ Operators should be designed as 
general purpose functions. This allows them to be combined 
flexibly for a variety of different applications.

The ARC/INFO geographic information system is based on the 
tool kit philosophy. It was inspired by earlier developments 
in unix, the Map Analysis Package [Tomlin, 1983] , and the 
Odyssey geographic information system [Chrisman, 1979][White, 
1979].

In ARC/INFO, the objects are vector locational data and the 
operators are geoprocessing commands for editing, analyzing, 
and displaying these objects.

THE ARC/INFO DATA MODEL

The ARC/INFO data model, together with its goals, is 
described in detail elsewhere [Morehouse, 1985] . It will be 
outlined briefly here. A fundamental goal in the development 
of the data model is that it perform well in the tool kit 
approach. This requires a simple yet general data model.

268



The basic unit of data management in ARC/INFO is the 
coverage. A coverage defines locational and thematic 
attributes for map features in a given area. The coverage 
concept is based on the topological model of geographic 
information and may contain several types of geographic 
features. Figure 2 shows the principal feature classes that 
may be present in a coverage. These feature classes form the 
basic vocabulary used to define geographic information in a 
coverage. By varying the types of features contained in a 
coverage and the thematic attributes associated with 
features, the coverage can be used to represent many types of 
map information.

^

Tic
flrc
Node
Polygon
Label Point
Rnnotation

Figure 2: Feature Classes in an ARC/INFO Coverage

Each feature class may have an associated feature attribute 
table. Each table defines the attributes (called "items") 
for all features of that class in the coverage. There is a 
record for each individual feature. The feature attribute 
tables are an integral part of the coverage and are processed 
by ARC for all ARC/INFO commands which affect the coverage. 
For example, when two polygon coverages are overlaid to 
create a new composite coverage, the polygon attribute tables 
of the input coverages are joined and written as the polygon 
attribute table of the output coverage.

ARC/INFO provides a mechanism for the management of very 
large geographic data bases through the Map Library. The map 
library organizes data as a set of layers and tiles. Layers 
are, in most respects, like coverages except that they are 
partitioned spatially by tiles. The Arc/Info data base is 
implemented using relational data base modelling techniques. 
A coverage is defined by a set of relations. Some of the key 
relations in the coverage are:

ARC: (arc#,f-node#,t-node#,l-poly#,r-poly#,xy...xy)
AAT: (arc#,item-l...item-n)
LAB: (label#,poly#,xy)
PAL: (poly#, arc#...arc#)
PAT: (poly#,item-l...item-n)

These relations define the geometric, topological, and

269



attribute values of the various features in the coverage. We 
have found the relational approach to be very valuable for a 
number of reasons. First, each Arc/Info tool can choose to 
access and create coverage relations in the way most 
appropriate to that tool - there isn't a single method used 
by all tools to access and update the data base. One example 
is writing new arcs to a coverage from a bulk data process 
(e.g. polygon overlay). In the bulk process, some 
relations, such as the list of arcs around polygons, can be 
created via more efficient algorithms than would be possible 
in an interactive editor.

Second, and more importantly, the relational approach allows 
us to grow the data base schema by simply adding new 
relations to the coverage model. For example, spatial 
indexes for all feature classes were added to Arc/Info by 
simply creating some new relations in the coverage and then 
teaching the spatial search module how to use them.

THE GEOPROCESSING TOOLS
Given the definition of objects in the Arc/Info data model - 
coverages, map libraries, tics, arcs, etc. - Arc/Info can be 
defined as the set of appropriate and useful tools which 
operate on these objects. This is an open-ended definition. 
The Arc/Info tool box is intended to grow and develop with 
CIS technology and with our users needs.

The Arc/Info tools operate at a variety of levels. There are 
tools which operate on entire map libraries, others which 
operate on coverages, and finally tools for manipulating 
individual features.

Map library tools. These tools all operate on map libraries 
(see figure 3) and are collected as the librarian function.

create

insert
manage

^" x^J" •"• Ui \3^
extract

Figure 3: Map Library Tools

The librarian defines and manages map libraries. The 
librarian has a number of tools which operate on libraries. 
Geographic data in the map library is managed like software 
in a source code management system. To perform an update, 
the relevant layers and area of modification are extracted to 
an operators workspace where the geographic data is edited 
and the edits verified. The verified data is then reinserted 
into the map library.

The librarian manages this entire process as a transaction on 
the map library and prevents simultaneous extraction of the 
same layer and affected area for modification by other users 
of the library.

270



This extract/insert approach to transactions on geographic 
data bases is necessary because revisions to geographic data 
generally involve long highly interactive processing and 
verification of the data. In most ways, update transactions 
on a geographic data base are more like transactions on a 
source code library than transactions on a tabular data base 
[Aronson, 1989].

The librarian also provides browse functionality. In this 
situation, most query and display tools which operate on 
coverages in a read-only fashion can also operate on entire 
map library layers as if they were a single seamless 
coverage.

Coverage Tools. These tools all operate on entire coverages, 
managing all feature classes and associated attributes in the 
coverage as a single unit (see figure 4).

translation

digitize/edit——(coverage^—— analysis 

query/display

Figure 4: Coverage Tools

These tools can be loosely grouped into four categories: 
translation, digitize/edit, analysis, and query/display.

The translation tools perform the conversion of data between 
a variety of spatial data formats and Arc/Info coverages. 
Translators which are presently supported include DLG-3, DXF, 
IGES, Moss, SIF, ascii, and various raster formats.

The digitize/edit tools support creating and editing 
coverages. The primary tool (or collection of tools) here is 
Arcedit. Arcedit is an interactive graphics editor for 
coverages. Other tools exist to support bulk generation of 
topology, data verification, form driven attribute data 
entry, and a number of other tasks necessary in creating a 
geographic data base.

The analysis tools perform spatial analysis functions 
involving one or more coverages. Generally the results of 
the analysis are written as a new coverage or as additional 
attributes on an existing coverage. The classic example of 
this type of tool is the polygon overlay or "spatial join" 
tool. This class of tool takes two coverages, finds all 
intersections between features and writes the resulting 
integrated coverage as a new coverage (see figure 5).

271



fl.PflT

f\# FTVPE
1 nn
2 BB
3 CC

o
C.PflT

B.PflT

C# FTVPE
1
2
3
4
5

RR
BB
BB
CC
CC

SLOPE
0-2
5+

2-3
2-3
5+

UNION R B C
Figure 5: Coverage Overlay

Arc/Info has an extensive set of spatial operators at the 
coverage level. These include:

coverage overlay:
- polygon on polygon
- point on polygon
- line on polygon 

thiessen polygon generation 
contour interpolation 
buffer zone generation 
network allocation
map projection and coordinate transformation 
rubber sheeting 
generalization
feature selection and aggregation 
arithemetric and logical attribute combination

The Arc/Info data model has been specifically designed to 
support these coverage level spatial analysis tools as well 
as query and edit tools which operate at the individual 
feature level.

Tne query/display tools are used to view the geographic data 
base and to perform ad hoc queries on the data base. Tools 
are provided to define and edit catrographic symbols, to 
scale and position map graphics, to associate catrographic 
symbols with geographic feature attributes, and so on. As a 
brief example of these tools, imagine the problem of 
selecting and drawing all roads in a given area which pass 
through hardwood forests. The Arc/Info tools which could be 
applied to this query are:

reselect forest polygons type = 'hardwood' 
reselect road lines overlap forest polygons 
arclines roads type type.symbol

The first operator performs an attribute selection on polygon 
features in the forest coverage. The second operator is a

272



overlap query which finds all line features in the road 
coverage which overlap the previously selected forest polygon 
features. Finally, the third operator displays the selected 
roads using cartographic symbols derived from the road type 
attribute.

Nearly all query/display tools operate on map library layers 
as well as individual coverages.

Feature level tools. These tools operate on individual 
features within a coverage (see figure 6).

create

delete

snap
select

move
draw

Figure 6: Feature Tools

The primary collection of these tools in Arcedit, the 
Arc/Info coverage editor. Arcedit provides tools for 
selecting features, then modifying them in various ways.

THE USER INTERFACE
The Arc/Info user interface can be defined at two levels - 
the base user interface and the application-oriented user 
interface. The application-oriented user interface is built 
on top of the base interface using the Arc Macro Language 
(AML). Figure 7 illustrates this concept.

user 
I

menus
AML

commands
Arc tools

— application 
Interface

— command 
Interface

Figure 7: The Arc/Info user interface

The base user interface is a simple command language similar 
in purpose to operating system command languages found in 
unix, MS-DOS, VMS, and other operating systems. It is based 
on the paradigm of tools and objects. Each tool in Arc/Info 
has an associated command in the Arc command language. This 
language is very simple, consisting of a verb followed by one 
or more objects or command qualifiers. For example, the 
command to invoke the polygon overlay tool is:

273



intersect <in_cover> <intersect_cover> <out_cover>

(where <in__cover>, <intersect_cover> are names of two 
existing coverages and <out_cover> is the name 
of a new coverage to create with the results.)

This level of the interface is designed for generality, 
extensibility, and flexibility. Commands can be either 
entered interactively from a keyboard by the user or can be 
supplied from AML procedure or menu. The command language 
can also easily grow through the addition of new commands and 
command qualifiers.

The application-oriented user interface is built on top of 
the base command interface using the AML language. AML is a 
procedural language interpreter designed specifically for 
Arc/Info. It has all of the features typically associated 
with operating system command languages, such as named 
variables, flow of control directives, numeric and string 
operators, and so on. AML also defines a set of user 
interface objects. These include pull down menus, pop up 
menus, and forms. These objects can be used to develop a 
user interface which is designed for a specific application 
or to provide a non command driven user interface.

THE SOFTWARE ENGINEERING APPROACH

Any CIS is a significant software engineering problem. To be 
useful, any CIS has to be well engineered. A clever data 
model or powerful user interface is useless unless the 
software performs correctly and will work effectively with 
large collections of geographic information. Software 
engineering issues are central to the viability of any CIS; 
they are also very interesting problems in their own right. 
Geographic Information Systems are ideal software engineering 
test cases - they involve database, graphics, computational 
geometry, user interface, and operating system technology. 
All of these technologies as well as geographic data 
modelling and analysis and user requirements are experiencing 
rapid and continual change.

To thrive in this environment, Arc/Info has been designed as 
an system which can grow and change. It is not a static 
system which meets a fixed set of preordained specifications. 
Arc/Info 5.0 is very different from Arc/Info 4.0 of just two 
years ago, Arc/Info 6.0 will be different again. The central 
goal in engineering Arc/Info has been to develop an 
architecture and programming methodology which supports this 
process. Once you realize that a system must evolve over 
time a number of other principles follow [Meyer, 1988].

The system must be maintainable. It will be continally 
modified, extended, and optimized.

The system must be portable, who knows what the 
computing/operating environment of the future will be?

The system must be as simple as possible. Simple systems can 
evolve much faster than complex systems.

274



The system must be reusable. Code and algorithms must be 
designed in a way which supports reuse in future, unforseen 
applications.

Clearly, the system must also be expandable and correct. 
Designing for correctness in an evolving system is different 
than ensuring that a system functions correctly for a single 
fixed design.

To accomplish these goals, we have adapted the techniques of 
modular software design and development [Parnas, 1972] in 
Arc/Info.

We organize all software development around the concept of 
the module. A module is simply a collections of routines 
which work together to define a data structure or to perform 
some function. Modules are entirely self-contained - the 
code within one module only interacts with code outside the 
module by well defined function calls. We have identified a 
number of module types in Arc/Info:

data structure module - defines and implements the behavior 
of a data structure (e.g. BITSYS - a bitmap manager).

device interface module - define and implement the 
behavior of a virtual hardware device 
(e.g. DIGSYS - the digitizer interface).

processing module - define and implement a functional 
process. This can either be a generic process 
(e.g. SRTFIL - a disk based sorter) or a specialized 
process (e.g. OVRSEG - find all intersections between two, 
potentially huge, sets of line segments).

program module - define and implement an executable 
program. Typically defines the user interface and 
functionality of a high level Arc/Info function (e.g. 
ARCPLOT - the cartographic display and query system).

Each module is typically the work of a single programmer and 
is designed as an independent unit. Modules only depend on 
the functional behavior of other modules that they may use. 
This means that the internal workings of a module can be 
freely replaced or extended. For example, we have replaced 
the internal workings of the segment intersection module a 
number of times without affecting the modules which use it 
(other than increased performance and reliability).

This modular software engineering approach, together with the 
simplicity and extendibility of the basic Arc/Info data model 
are what allows us to continually grow Arc/Info as a software 
product.

CONCLUSION
Two popular approaches to CIS design are the spatial database 
management system and the geographic tool box. Arc/Info is 
an example of the tool box approach. The data model of 
Arc/Info is based on a combination of the topological network 
approach for locational information with the relational 
approach for feature attributes. Arc/Info has an extensive

275



set of tools which can operate on this data model. Users can 
interface with the system either at the basic tool level or 
through applications and interfaces layered on top of these 
tools. The primary goals in the development of Arc/Info as a 
software system has been generality and extendibility. All 
aspects of the system from the data model to the user 
interface to the internal engineering of the system have had 
these goals in mind.

This approach and CIS architecture has been very successful. 
Arc/Info is presently in production use at over 1000 sites 
worldwide. It is being used for a wide variety of 
applications including natural resource planning, 
catrography, tax assessment, and facilities management. The 
system is a mature system which will continue to evolve and 
grow to support the changing needs of our users and the CIS 
community as a whole.

REFERENCES

Aronson,P. (1989), "The Geographic Database - Logically 
Continuous and Physically Discrete", Proceedings, Auto-Carto 2, Baltimore, Md. —————————————————

Berry,J. (1987), "Fundamental Operations in 
Computer-Assisted Map Analysis", International Journal of 
Geographical Information Systems, v.l, n.2, p. 119-136.

Bundock.M. (1987), "An Integrated DBMS Approach to 
Geographic Information Systems", Proceedings, Auto-Carto 8, Washington, D.C., p. 292-301. ———————————

Carlwood.G., G. Moon, and J. Tulip (1987), "Developing a 
DBMS for Geographic Information: A Review", Proceedings, 
Auto-Carto 8, Washington, D.C., p. 302-315.

Chrisman,N. (1979), "A Many Dimensional Projection of 
Odyssey", Laboratory for Computer Graphics and Spatial 
Analysis, Graduate School of Design, Harvard University.

Frank,A. (1982), "MAPQUERY: Data Query Language for 
Retrieval of Geometric Data and their Graphical 
Representation", Computer Graphics, 16, p.199-207.

Herring,J. (1987), "TIGRIS: Topologically Integrated 
Geographic Information System", Proceedings, Auto-Carto 8, 
Washington, D.C., p. 282-291.

Meyer.B. (1988), Object-oriented Software Construction, 
Prentice-Hall, London.

Morehouse.S. (1985), "ARC/INFO: A Geo-Relational Model for 
Spatial Information", Proceedings, Auto-Carto 7, Washington, 
D.C., p. 388-397.

Parnas,D. (1972), "On the Criteria to Be Used in Decomposing 
Systems into Modules"", Communications of the ACM, vol. 5, 
no. 2, pp. 1053-1058.

Stonebraker,M. (1986), "The Design of POSTGRES", Proc. 1986

276



ACM-SIGMOD Conference on Management of Data, Washington, B.C.

Tomlin,C.D.(1983), "Digital Cartographic Modelling Techniques 
in Environmental Management", Doctoral Dissertation, Yale 
University, School of Forestry and Environmental Studies, New 
Haven, Connecticut.

White,D. (1979), "Odyssey Design Structure", Harvard Library 
of Computer Graphics, 1979 Mapping Collection, Vol. 2, pp. 
207-215.

277




