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ABSTRACT

The number of elementary connected regions arising from polygon overlay of two or more 
map layers is an important value to have in planning for data stoiage and in making 
processing time estimates for overlay applications. That number may be computed di 
rectly from the line graphs of the two (or more) layers and from the intersection graph(s) 
of those line graphs. A formula for that computation is derived using tools of algebraic 
and combinatorial topology which relate the connectivity of a union of sets to the con 
nectivity of the sets themselves and their intersection. The result and the formula may 
be stated as follows:

Suppose X is the line graph (1-skeleton) of a map. Regard X as embedded in the 
plane. Let r(X) be the number of regions of the plane separated by X. Then r(X) 
is the number of connected components in the planar complement of A"; r(X) is also 
one more than the maximum number of independent cycles in the graph A"; and r(A') 
is easily computed using standard graph traversal techniques for counting independent 
cycles. Let c(X) be the number of connected components of A'.

If A and B are the line graphs of maps to be overlaid, then A U B is the line graph 
of the overlay; and:

r(A UJ5) = r (A)-c(A) + r(B)-c(B)- r(A n B) + c(A n B} + c(A U B)

All of the values on the right hand side of the equation can be readily computed 
using standard graph traversal and line intersection algorithms to obtain the desired 
value. r(AU B). the number of regions after overlaying.

1. INTRODUCTION

The fundamental naive combinatorial question regarding polygon overlay is the following: 
If I overlay a map of n regions on another map of m regions, how many regions are there 
in the composite map? The possible answers are: any number that is not smaller than 
max{r>?.7?}. Hence, the answer that we give cannot be a number or even a bound. We 
relate the number, instead, by an exact formula, to the number and kind of line intersec 
tions that occur. In so doing, we transform the problem into one that is more amenable 
to analysis and to establishing constraints. In this paper we present some methods and 
results of algebraic topology that illustrate the nature and the methods of dimensional 
duality for addressing some of the global questions in mathematical cartography. We do 
not pretend to develop theory of algebraic topologv in any detail here-indeed, to arrive 
at our small result, we must skim over a great deal of mathematics. The interested reader 
is directed to Henle [l] for more of the topological and combinatorial details and to Hu 
[2] for a more complete exposition of algebraic concepts.

This paper introduces and describes a limited number of tools of algebraic topology-a 
sufficient numbei to derive the formula that relates intersections to the number of regions 
of the overlay.
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2. PRELIMINARIES: CHANGING TOPOLOGY TO ALGEBRA

2.1. Basic Concepts in Algebraic Topology

Algebraic topology is the area of mathematics that examines algebraic properties of alge 
braic objects derived from topological spaces. Spaces which are topologically equivalent 
have the same collection of algebraic objects associated with them; and mappings be 
tween topologica.1 spaces have associated with them mappings between the corresponding 
algebraic objects. Topological problems are converted to algebraic problems under the 
described association (formally this association is called the functor from the category 
of topological spa.ces a,nd continuous functions to the category of groups and group ho- 
momorphisms or the category of rings and ring homomorphisins or some other aJgebraic 
category).

Topological 
Structure:

Space
X

Continuous function Space
Y

Functor (F): F F F

Algebraic 
Structure: F(X)

Group

F(f)
Homomorphism

F(Y)
Group

Figure 1: A functor converts topological structure to algebraic structuie

Inevitably the algebraic invariants of topological spaces and topological functions 
cannot retain all of the topological information of the spaces and functions themselves. 
Often, for example, the algebraic objects are finite, or finitely generated and enumer 
able, while the interesting topological objects are uncountably infinite. Nonetheless, the 
reduction of information content to finite or finitely generated sets is precisely the trans 
formation we need to operate with our mathematical model of a-map-as-a-contimnim on 
a computer, which is a finite machine. The map, which has infinitely many points, is 
partitioned into finitely many cells, which we call 0-cells, 1-cells, and 2-cells depending 
on their dimension. Those finitely many cells are used to build algebraic structures called 
chain groups, one group for each relevant dimension; and algebraic boundary operators 
(homomorphisms) are defined between those groups which capture the essential topo 
logical boundary relations among the 0-cells, 1-cells, and 2-cells. Each element of the 
n-dimensional chain group is a formal linear combination of independent symbols, one 
svmbol for each different n-cell.
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2.2. Building Elementary Algebraic Structures From Topologica.1 Spaces

O-cells: a, b, c, d
1-cells: A, B, C, D, E, F
2-cells: a, p

Boundary Operators:
act = D + F - C - A 
9(3 = C - E - D - B

3A = a - d 9B = d - a 
3D = c - d 3E = b - c

3C = b - a 
3F = b - c

3a = 3b = 3c = 3d = 0

Figure 2: Cell decomposition of annular region, associated group generator, boundary 
operatois. and typical elements

The chain groups and boundary homomorphisms depend on the choice of cell decompo 
sition of the spa,ce; and a, map may usually be decomposed into cells in vaiious ways.

Figure 3: Two different cell decompositions of a region

2.3. Building Composite Algebraic Structures From 
Elementary Algebraic Structures on Topological Spaces

New groups, called homology groups, may, in turn, be derived from the chain groups by 
forming quotient groups of distinguished subgroups of cycles and boundaries of the chain

280



groups. These homology groups surprisingly do not depend on the cell decomposition of 
the topological space, but on the space itself! That is, two different cell decompositions of 
the same space will produce two different chain groups, but the distinguished subgroups 
of the two chain groups will always, in turn, produce the same (up to isomorphism) 
collection of homology groups.

0-cells: a,b,c,d
1-cells: A,B,C,D,E,F
2-celIs: a,p

a,b,c,d,e,f 
A,C,D,F,G,H,I,J,K

Generator of l-dimensional homology group:

[A+B]=[F-E] 
because

A+B=F-E-a{cc+p}

[A+G-H]=[F+J-K]
because 

A+G-H=F+J-K-a{a+8+y}

Figure 4: Different cell decompositions yield same homology

Now let's look at the underlying .significance oi homology groups, and we will describe 
without proof the structuie of homology for many topological spaces, including plane 
graphs (i.e. the linework of our cartographic objects).

2.4. Some Examples of Homology Croups

Homology groups desciibe the connectivity structure of the topological space. For maps 
represented by a full complement of 0-cells, l-cells and 2-cells, the homology groups 
a,re uninterestingly trivial because the full cell structure adds up to a space which is 
topologically trivial-i.e. equivalent to a rectangle or (if it is a world map) equivalent to a. 
sphere. All homology groups of a rectangle are 0 except the 0-dimensional group, which 
is Z, a single copy of the integers. We write H0 (R) - Z.

Foi Ihe sphere, we have llo(S) - -  <?, and foi all  / diffeient from 0 and 2,
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The somewhat more useful homology groups are those of the line network (sometimes 
called the 1-skeleton) of the map. The 1-dimensional homology group measures simple 
connectivity (or lack thereof) of the topological space; and the graph network ha,s many 
cycles and thus is not simply connected ("Simply connected" means that any loop can 
be shrunk continuously to a point without leaving the space.) The plane and the sphere 
are both simply connected. The annular region of figures 2 to 4 is not simply connected, 
hence 7/i of that region is not 0.

The following are useful summaries of how homology groups behave for the line graph 
network of a map and what they show about that network:

5A 5B

Figure 5: A map (A) and its line graph network (B).

For a topological spa,ce consisting of the linework of a planar graph (such as shown 
in figure 5B), the homology gioups have the following structuie:

HQ(X )— Z 9 Z   Z $ ... 9 Z 0 Z, 77 copies of Z. the integers, where n is the number 
of connected components of X. In the case shown in figure 5B, 7? = 4.

JI}(X) = Z   Z   Z (Ji .. 9 Z 43 Z. ?n copies of Z, the integers, where m is the 
maximum number of independent cycles of the graph X ("cycles" in the graph-theoretic 
sense, "independent" in the algebraic sense-no non-trivia] linear combinations of these 
elements are zero.) In the case shown in figure 5B, 77? = 10, and a collection of generators 
for those cycles (in the graph sense) would be sums of the appropriately signed edges 
making up the outer boundaries of the ten regions shown in figure 5A. Notice that there 
are far more than 10 different cycles on the graph. What the homology group captures 
with its algebraic structure is the dependence relations of all of those infinitely many 
cycles. The homology group is more than just a count of how many independent cycles 
there are!

H t (X) — 0 for all ? > 1 since the line graph X has no 2-dimensionaJ or higher 
dimensional elements which might generate cycles in the homology sense.

Loosely speaking, then. HQ counts connected components oi the line network, and 
//], though it is the homology group of the line network itself, also counts fundamental 
(interior) regions delimited by the line network.
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3. ALGEBRAIC TOOLS

3.1. Semi-exact Sequences and Exact Sequences

Algebraists have developed a standardized shorthand notation to describe essential struc 
ture of interesting subgroups and quotient groups: They have conveited objects into 
homomorphisms and into sequences of homomorphisms in order to treat objects and 
homomorphisms with the same tools a.nd operators. The tools focus on two important 
subgroups of a homomorphism, the kernel (ker) and the image (Im).

If $ : G —- K is a homomorphisms of groups then:

ker($) = [y 6 G\$(y) = CA . the identity of A'}

and
Im(4>) = {k 6 I\\k = $(#)for some g £ G}.

If a sequence of two or more homomorphisms may be composed with each other because 
the appiopriate domains and ranges match, then we may examine the relation of the 
image of a homomorphisms to the kernel of its successor:

If the image Im( $,_/,,) is contained in the kernel ker($,_^-_| ) for all meaningful values of 
k. then we say that the above sequence is semi-exact.

If the image Im(4>,_^) is equal to the kernel ker($,_|._j ) for all meaningful values of 
k, then the sequence is exact.

The two fundamental results on sequences of chain groups and induced groups, given 
without proof, are the following:

1. The boundary operators for chain groups always yield semi-exact sequences.

Elements that lie in the kernel of a boundary operator have zeio boundary; and we 
call them cycles. Elements that lie in the image of the boundary operator are called 
boundaries (because they are boundaries of something!) Cycles that are not, bound- 
aiies geneiato the homology groups, which describe the exlent to whirli the semi-exact 
sequences induced by the boundary operators fail to be exact.

2. Homology groups may be embedded in natural exact sequences whose homomor 
phisms a.re induced by the boundary operators and inclusion maps

One such exact homology sequence is the Mayer-Vietoris Exact Homology Sequence 
described in the next section.

3.2. The Mayer-Vietoiis Exact Homology Sequence

The Mayer-Vietoris Exact Homology Sequence relates the homology groups of the union 
and intersection of two "nice" topological spaces to the homology groups of the spares 
themselves by embedding all the groups in an exact sequence:

       Ht (AC\B) —— H t (A}@Hl (B) —— Ht (A U B)    //,_,(/! n£)    ---

Knowing that a sequence is exact, and knowing some of its groups, one may often deduce 
tiie missing groups. That is the approach that this exposition will utilize. We will not
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worry about the way in which the exact sequence is defined. The interested reader is 
referred to Hu [2] for a full explanation of the Mayer-Vietoris Sequence and sufficient 
conditions on the topological spaces A and B to guarantee exactness of the sequence.

4. USEFUL PROPERTIES OF HOMORPHISMS AND EXACTNESS

4.1. Rank of a. commutative group

All of our homology groups are commutative and are finitely generated. Suppose that 
we have any commutative group that is finitely generated. Then the theory of groups 
tells us that the commutative group may be regarded as a direct sum of a number n of 
copies of the integers Z, Z   Z   Z $ ... fg Z <J) Z, plus T, the torsion or finite subgroup of 
the larger group consisting of all elements of finite period.

The value n totally and uniquely determines the algebraic structure of the torsion- 
free part of this direct sum. The number n is called the ra,nk of the group: and for any 
group homomorphism $, the rank has the following nice additive property:

rank(G') = rank(ker($)) + rank(Im($)) 

We will use this property to prove an important lemma. 

4.2. Telescoping Lemma

The next lemma is the key to constructing a missing group n\ an exact sequence of 
groups:

Lemma: Suppose that the sequence given below is exact and that 'each group G, has 
rank n,.

*, + „ r $„ r *n- 1 4> 3 c , $2 „ <J>, 
0 —— > G n ——— G n _l ——— • • • ——— C7 2 —— ' LT\ ——— 0

where $ +] and 4>i are the zero homomorphisms. Then consider the following alternating 
sum:

(-])"rank(G'n ) + (-1 )"~ l rank(6' n _ 1 ) +     + rank(G' 2 ) - rank^ ) = ]T(-1 )'rank(G',;

Then this sum is zero by the exactness of the sequence. 

Proof of the lemma:

Call rank(ker($J)"A;," and call rank(Im( $,))"/,".

Let A-Q = rank(ker($0 )) = /i = 0 to simplify notation.

For i > 0, each rank(G'J = rank(ker($j)) + rank(Im($,))

= A, +/,

= rank(ker($ i )) + rank(ker( $,_]

= A, + fc,-!
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Thus:

But the alternating sum causes all terms to cancel except possibly: 

kn + /] = ra.nk(ker($ n )) - rank(Im($j))

But by exactness, ker($ n ) = Im($ n+1 ) = 0, and Im($i) = 0. For consistency, we let 
rank(O) = 0.

Next we see why rank is useful to know.

5. APPLYING THE RESULTS TO THE OVERLAY PROBLEM

Now let's put some of our results together. We know some homology groups. We have 
seen one exact sequence, the Mayer-Vietoris Sequence, which relates homology groups 
for two spaces, their union, and their intersection. Finally we have the telescoping lemma 
which allows us to relate in a single equation the ranks of all of the homology groups that, 
appear in a,n exact sequence. We merely need to observe how we can actually calculate the 
ranks of all but, one of the homology groups that appear in the Mayer-Vietoris Sequence, 
and then we will know the remaining group's rank.

Let A and B be two line graphs of maps to be overlaid. Then the portion of the 
Mayer-Vietoris sequence that may contain non-zero entries is the following:

   - H2 (A\JB) - H] 
-- H0(Ar\B)~ H

where both Hi(A U B) and 7/_i(.4 n B) are zero.

The term in the sequence that, we want to compute is H\(A U B)- and we can find 
that, term by examining AnB, the intersection graph. Standard graph traversal methods 
allow us to detect all common components of A and B and to find their intei sections. 
All that remains is to describe A n B in terms of its number of disconnected components 
and its number of independent cycles. Again standard graph traversal techniques permit 
us to derive these numbers.

Then we know fiom the Telescoping Lemma that:

rank(77](,4 n B}) - rankf/M A)   Hi(B)) + rank(//i(/l U B))-
rank(#0 ( A n B)) + rank(//0 (A) 9 H0 (B)) - rank(#0 (,4 U B)) = 0.

Furthermore, the ra,nk of a direct sum is just the sum of the ranks:

rank(#,(A) 6 Ht (B)) = rank(#,(/l)) + rank(#,(J?))

Finally, recall that the ra,nk(7/i(Ar )) is just a count of the interior regions separated by 
the line graph X; and rank(//0(^)) is simply the number of components of X. Putting 
it all together, and using the notation:

r(X) = rank(fl](A"))and c(X) = rank(/70 ( A')),
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we get:

Notice further that if r'(X) represents the total number of regions of the map (not just 
the interior regions), then the equation still holds (because r'(X) = r(X) + 1, and r 
appears twice with a plus sign and twice with a negative sign):

r'(A nB)- (r'(A) + r'(B}} + r'(A U B) - c(A n B) + (c(A) + c(B}} - c(A U B) = 0 

Isolating r(A U B) (or r') we get:

r(A \JB) = r(A) -c(A) + r(B) - c(B) - (r(A nB)-c(AnB)) + c(A U B) 

We conclude with the example in figure 6 to illustrate our methods.

B

AUB AOB

Figure 6: Deriving the Complexity of Overlaying A and B

In figure 6 we see that r(A) = 13, r(B) = 6, and r(A n B) - 3. Moreover, because 
A. B, and A U B are all connected, c(A) = c(B) = c(A(J B) - 1. Finally, the number of 
components of A n B, c(A n B}, is 9. Thus by our formula r(A U B) = 24.

We see from our example that a critical contributor to the sum on the right is the 
term c(A n B), the number of new components (usually isolated intersections) of the 
intersection graph. By our formula, every new intersection gives rise to a, new region! This 
observation may be useful in estimating the number of new regions that arise in overlay 
operations. If, for example, we can place a bound on the number of new intersections 
tha.t will occur, then we can conclude that the numbei of new regions will be bounded 
accordingly This is a nice duality relation that we will develop in a later, longer paper.
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6. CONCLUSIONS

We have introduced a few useful ideas from the realm of algebraic topology in order 
to illustrate one way of applying important duality relations to a specific combinatorial 
problem. In effect we have converted the problem of determining the number of regions 
arising from polygon overlay to a graph traversal and intersection detection problem. 
Further research is planned along the following lines:

1. Describe properties of the line segments in the line networks to be overlaid (such 
as extent, density, etc.) that would produce a guaranteed bound on the number and type 
of intersections and a corresponding bound on the number of new regions created.

2. Integrate topological information into the computation of the intersection graph 
in order to prevent sliveis, gaps, and other anomalies clue to geometric imprecision.

3. Develop relative homology groups for analysis of local combinatorial duality rela 
tionships.

I will write up new results and elaboration of the results sketched here in a more extensive 
research paper.
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