
TRANSPUTER BASED PARALLEL PROCESSING FOR GIS ANALYSIS: 
PROBLEMS AND POTENTIALITIES

Richard G. Healey and Ghazali B. Desa
Regional Research Laboratory, Scotland

Department of Geography
University of Edinburgh

Drummond Street 
Edinburgh EH8 9XP 
Scotland, U.K.

ABSTRACT

The availability of parallel processing computers based on 
large number of individual processing elements, offers the 
possibility of multiple orders of magnitude improvement in 
performance over the sequential processors currently used 
for GIS analysis. Before this potential can be realized, 
however, a number of problems must be addressed. These 
include assessment of the relative merits of different 
parallel architectures, choice of parallel programming 
languages and re-design of algorithms to allow effective 
distribution of the computational and i/o load between 
individual processors, so performance can be optimized. 
These problems are examined with particular reference to 
transputer-based parallel computers and some possible GIS 
application areas are discussed.

INTRODUCTION

The limitations of serial processors for handling 
computationally intensive problems in fields such as fluid 
dynamics, meteorological modelling and computational 
physics are well-known, but it is only comparatively 
recently that attention has been turned to this problem in 
the fields of remote sensing/image processing and GIS 
(Yalamanchi and Aggarwal 1985, Dangermond and Morehouse 
1987). Parallel processing techniques, where one or many 
computational tasks are distributed across a number of 
processing elements, have been proposed as a solution to 
the problem (Verts and Thomson 1988). They offer the 
potential for orders of magnitude improvement in 
performance, which should allow real-time processing of 
very large datasets, with powerful modelling and 
visualization capabilities.

Since parallel processing hardware is still at an early 
stage of development and parallel programming methods are 
distinctly in their infancy, it is difficult to make firm 
statements about how GIS might avail itself of this new 
technology. More appropriate at this stage is an 
examination of several aspects of the overall problem. 
These aspects include evaluation of existing types of 
hardware and software for parallel processing and

90



approaches to the re-design of CIS algorithms, so they can 
take advantage of these novel machine architectures. This 
paper addresses these issues with particular reference to 
parallel processing based on networks of transputers.

TYPES OF PARALLEL ARCHITECTURE

It is not the intention here to give an extended survey of 
parallel architectures, as several of these are already 
available (Bowler et al. 1987a, Treleaven 1988), so a brief 
outline of the major types will suffice to provide the 
context for the present discussion.

SIMP and MIMD parallelism

One major approach to the design of a parallel computer is 
to link processing elements (PEs) into a two-dimensional 
array. If a SIMD (single instruction, multiple data- 
stream) method of operation is used, each program 
instruction is despatched simultaneously to each PE which 
executes it on the data it has stored locally. Examples of 
such machines include the NASA Massively Parallel 
Processor, the Connection Machine and the AMT distributed 
array processor. MIMD (multiple instruction, multiple 
data-stream) machines have grown in importance of recent 
years because of the availability of cheap but powerful 
microprocessor chips. Programs running on these machines 
are executed by all the PEs, but at any moment each 
processor may be at a different stage of program execution.

Shared and distributed memory systems

MIMD machines can be sub-divided on the basis of how memory 
is allocated to individual microprocessors. If a number of 
these are connected to a number of memory modules by means 
of a switch, to form a common global memory, the machine is 
of the shared memory type. An example of this is the BBN 
Butterfly which utilizes Motorola 68000 or 68020/68881 
chips. In a distributed memory system each PE comprises a 
microprocessor with its own local memory. Hardware 
switches or links connect the individual PEs. An example 
would be the CALTECH Mark III Hypercube, which is also 
based on up to 128 Motorola 68020/68881 chips with 
additional I/O processors and Weitek floating point units.

Fixed and reconfigurable architectures

A further sub-division of distributed memory MIMD machines 
can usefully be made, depending on whether the topology of 
the links between the individual PEs is fixed in the 
hardware or is electronically re-configurable. The latter 
introduces a much greater degree of flexibility into the 
ways the computing resource can be utilized for different 
applications. Examples of fixed and reconfigurable 
architectures are the Intel iPSC-VX, based on 80286/80287 
processors, and the Meiko Computing Surface based on 
transputers.

91



TRANSPUTER-BASED PARALLEL PROCESSING

Since it is less widely known than the Motorola or Intel 
chip sets, it is useful to outline some of the particular 
features of the Transputer, which was designed with 
parallel processing in mind, before assessing some of the 
advantages and disadvantages of different parallel 
architectures.

The most recent version of the INMOS transputer, the T800 
chip, contains a number of processing components. The 
first of these is a 10-MIPS 32-bit RISC processor linked at 
80 MByte/Sec to 4K of on-chip RAM. In addition there is an 
integral 64-bit floating point unit capable of 1.5 Mflops. 
The chip has 4 20 MBit/sec INMOS links which can be 
directly connected to other transputers, together with an 
external memory interface with a bandwidth of 26.6 
MByte/sec. The T800 is claimed to achieve more than five 
times the performance of the Motorola 68020/68881 
combination on the Whetstone benchmark (Bowler et al. 
1988).

The major vendor of transputer-based parallel computers is 
the UK firm Meiko Ltd. which has developed a modular, 
extensible and reconfigurable computer system called the 
'Computing Surface'.

COMPARISON OF PARALLEL ARCHITECTURES

Given the difficulties of comparing supposedly similar 
serial processors, it is not surprising that comparison of 
parallel architectures, where there are many more 
parameters to consider, is a rather inexact science. 
Nonetheless, some major points relating to the different 
categories described above can be identified.

With respect to SIMD and MIMD architectures, testing of 
distributed array processors against transputer networks 
indicates that the former operate best with strongly 
structured algorithms which do not have independently 
branching chains of instructions. Requirements for very 
fast I/O and data comparison operations also favour SIMD 
machines. The two types both perform well for sorting, but 
transputer networks are superior for 3-d graphics and 
modelling requirements (Roberts et al. 1988).

For shared and distributed memory systems the picture is 
less clear, because shortcomings of specific hardware 
configurations may be compensated, to varying degrees by 
the use of different operating systems and programing 
methods. Several points need to be considered, however. 
Firstly, access to local memory is on average three times 
faster than to a global or shared memory. Secondly, the 
speed of interprocessor communication and thirdly, the 
relationship between the computational performance of each 
PE and the speed of interprocessor communication need to be 
taken into account. The usefulness of a particular 
architecture will then depend on the extent to which a

92



given problem can be decomposed into separate computational 
tasks, or requires access to a shared database of 
information (Bailie, 1988). The overall aims will be to 
minimize communications bottlenecks between processors, to 
get maximum utilization of each PE during the computation 
and to attain as nearly as possible a linear speed-up in 
processing time, as the number of processors used for a 
particular set of calculations is increased. Distributed 
memory systems, such as the transputer network, are proving 
popular because of fast memory access, but difficulties may 
arise for such systems in terms of communications 
overheads, if large amounts of data require to be 
transferred between processors.

Comparison between fixed and reconfigurable architectures 
is more straightforward, in that the latter is undoubtedly 
to be preferred, for two main reasons. Firstly, it allows 
the machine to 'mimic' other architectures, such as a SIMD 
or a hypercube, for comparative purposes. Secondly, it 
permits the overall computational resources to be divided 
into 'domains' of different sizes, so parts of the machine 
can be used for development while others are engaged in 
large scale computation.

Finally, the cost-effectiveness of parallel architectures 
involving large numbers of PEs, compared to single or 
multiple vector processors much be addressed. The parallel 
approach has an initial advantage because it is scalable 
from a small number of PEs, costing a few thousand dollars, 
to top-end Computing Surfaces costing several millions. In 
addition, using the unit comparison of 
megaflops/megadollar, a transputer-based machines seems to 
have approximately a five-fold improvement in cost 
effectiveness compared to a CRAY X-MP/48, with similar 
floating point performance (Bowler et al. 1987b).

These considerations indicate that reconfigurable, 
distributed memory MIMD machines such as the Meiko 
Computing Surface have a wide range of advantages, with 
potential limitations only in relation to interprocessor 
communication and extreme high-end reqirements for floating 
point performance. As a result, the Meiko machine was 
chosen as the basis for the Edinburgh Concurrent 
Supercomputer Project. The first phase of this has 
resulted in the installation of a Meiko machine with 200 
transputers, each with 4 MB of local memory, together with 
a filestore and specialized graphics peripherals. Future 
project phases will allow the installation of large numbers 
of additional transputers, until the machine reaches its 
target size of at least 1024 processors, with 10,000 MIPS 
total processing power, 4 GBytes of distributed memory and 
an expected rating in excess of 1 Gflop. This will make it 
one of the most powerful supercomputers in Europe. The 
machine is jointly managed by the University Computing 
Service and the Department of Physics, but is in use by a 
variety of other research groups also.

93



PARALLEL PROGRAMMING LANGUAGES

Although parallel hardware has demonstrably reached the 
stage where a range of applications for large scale CIS 
processing can be envisaged, the position is less clear in 
terms of operating systems and programming languages.

Since parallel machines generate many new problems of 
system management, they have tended to be built with 
special purpose operating systems, which is a first major 
obstacle to software development activity of any kind! In 
the case of the Meiko this problem has now been resolved by 
the development of a UNIX System V compatible operating 
system for development work.

The second obstacle is the lack of support for parallel 
programming constructs in existing languages used for GIS 
software, specifically FORTRAN, C and to some extent 
PASCAL, although FORTRAN 8X is expected to include such 
facilities in the future. At present, there are three 
alternative methods of circumventing the problem:

i) Addition of new constructs into language 
compilers running on parallel machines

ii) Use of new languages, such as ADA or OCCAM, which 
support parallel programming directly

iii) Use of existing languages within a communications 
'harness' provided by languages like OCCAM to 
allow access to parallel facilties.

In relation to the first alternative, a 'parallel' C 
compiler has been announced for the transputer, but 
problems of standardization are likely to plague this 
approach. The second alternative offers promise because 
the transputer was designed to run OCCAM, a language for 
parallel programming based heavily on Hoare's work on 
communicating sequential processes (Jesshope 1988). The 
language has particular strengths in facilities for message 
passing along OCCAM channels, but is limited in its support 
for the variety of data structures found in existing 
sequential languages. ADA, by contrast, supports parallel 
programming through its tasking model, while having a 
wealth of data structures. It also provides constructs to 
support the use of sound software engineering techniques 
(Sommerville and Morrison 1987). An ADA compiler for the 
transputer is currently under development and this avenue 
for future work will be explored when the tools become 
available. The final alternative is the one which is most 
heavily used at present on the Meiko processor, 
particularly for FORTRAN in an OCCAM harness. The FORTRAN 
implementation allows block input and output of data arrays 
between FORTRAN programs running on different processors, 
across OCCAM channels communicating over the transputer 
hardware links. This approach is satisfactory in the short 
term for testing alternative parallel algorithms or re 
using existing code, to take advantage of the substantial

94



increase in processing power on a parallel machine. It is 
not, however, a suitable approach for the implementation of 
large programming projects, designed to produce reliable 
and maintainable software that makes effective use of 
parallel processing techniques.

The shortcomings in available facilities and standards for 
parallel programming languages require to be addressed 
urgently if progress in the use of the hardware is not be 
hampered. While these shortcomings make it difficult to 
port existing packages, the situation may not be entirely 
disadvantageous, as it allows attention to be focussed at 
present on research into methods of parallelization of 
algorithms. Development of effective approaches for 
different kinds of algorithms is fundamental to the proper 
utilization of parallel processing techniques.

PARALLELIZATION OF ALGORITHMS

It is apparent from the earlier discussion that algorithms 
appropriate for one kind of parallel architecture may be 
unsuitable for another. This examination of 
parallelization methods will be restricted to distributed 
memory MIMD machines.

Although architecture dependent at the level of specific 
implementation, several general points about the 
relationships between serial and parallel algorithms can 
still be made (Miklosko and Kotov 1984):

i) Effective serial algorithms may not contain any 
parallel elements

ii) Some apparently serial algorithms may contain 
significant hidden parallelism

iii) Non-effective serial algorithms can lead to 
effective parallel algorithms

Past experience and well-tried serial methods of 
programming may not therefore be a good guide to parellel 
algorithm design and the qualities of inventiveness and 
imagination may be of more value in developing new 
approaches to problem solving! There are, nonetheless, 
several broad approaches to algorithm parallelization, 
including

i) Event parallelism
ii) Geometric parallelism
iii) Algorithmic parallelism

Event parallelism

This is one of the most straightforward ways of exploiting 
parallel processing. The approach utilizes the concept of 
a master processor which distributes tasks to slave 
processors and assembles the computational results from 
each in turn. Such a configuration is usually termed a

95



'task farm' (Bowler et al. 1987t>). In the simplest kinds 
of problem, each slave processor runs the same code against 
its own specific dataset. When the processor array is 
large and each processor individually very powerful, as on 
the Meiko machine, it can be difficult to achieve data 
input rates sufficiently, high to keep the machine busy. 
Conversely, where the computational load is very high but 
the data input more restricted the Meiko delivers extremely 
high performance. A good example of this type of problem 
is ray tracing for the display of complex 3-d objects. 
Since each light ray being followed is independent, the 
algorithm is highly parallel. While such algorithms have 
important application for visualization problems in CIS, 
many other CIS processing requirements are not of this 
form.

Geometric parallelism

This is a very natural kind of parallelism for CIS 
algorithms, as it requires that the problem space be 
divisible into sub-regions, within which local operations 
are performed. Calculations performed on elements near the 
boundaries of sub-regions will generally require 
information from neighbouring sub-regions. This emphasis 
on algorithm localization matches an approach which can be 
found, for instance, in the Intergraph TIGRIS system, for 
interactive editing of topological data structures (Herring
1987) and in the inward spiral algorithm for TIN generation 
(McKenna 1987).

Since individual sub-regions will be handled by different 
processors, boundary data must be passed between them, 
introducing a communications overhead. It is therefore 
important, with the current level of development of 
distributed memory MIMD machines, to define sub-regions 
such that the amount of within region processing is 
maximized and the between region communication is 
minimized. It is also advisable to locate neighbouring 
regions on physically adjacent processors. (Bowler et al.
1988).

The four available hardware links on each transputer are 
sufficient for two-dimensional geometric parallelism, but 
even for the simplest three-dimensional case with sub- 
regions forming cubes, each sub-region will hve six 
boundary faces. This can be matched in the hardware by 
connecting multiple transputers as 'supernodes' to yield 
six or more links (Jesshope 1988).

For geometric parallelism it is also necessary to consider 
the way in which the overall processing operation and 
communication between processors is organized. If a 
tightly synchronous model is used, a master processor 
communicates with each sub-region processor to determine 
when all have completed their local computations for a 
given step. At this point an exchange of boundary 
information takes place before proceeding with the next 
computational step. This approach generally produces

96



inefficient hardware utilization. The loosely synchronous 
model, where boundary information is exchanged as soon as 
one processor is ready to provide it and its neighbour is 
ready to receive it, is to be preferred if processor 
workloads are broadly similar. If workloads vary 
significantly, as might be expected for CIS applications, 
complex asynchronous behaviour may result, leading to 
unpredictable levels of inefficiency (Norman 1988). One 
solution to this is to recast the problem to allow improved 
dynamic balancing of the workload, perhaps by assigning 
non-contiguous portions of the overall space to individual 
processors. This approach has been used effectively for 
three-dimensional medical imaging (Stroud and Wilson 1987) 
and has immediate application for voxel-based processing of 
geosciences data (cf. Kavouras and Masry 1987).

Algorithmic parallelism

With this approach, each individual processor performs a 
specific task on blocks of data which pass through the 
processor network in a production line fashion. Though 
attractive as a concept, algorithmic parallelism encounters 
difficulties at the implementation stage which tend to 
reduce its efficiency. These include communication and 
configuration problems. In the former case, each processor 
has to receive different initialization instructions for 
its specific portion of the computational task. In the 
latter case, one configuration of inter-processor linkages 
may be appropriate for some stages of the work and 
inappropriate for others. This will remain a problem until 
the technology for dynamic reconfiguration of processor 
arrays becomes available. While quantitative comparisons 
are very hard to find, experiments at Southampton 
University on Monte Carlo simulations suggest that 
geometric parallelism gives a much better approximation to 
linear speed-up as the number of processors is increased, 
than does algorithmic parallelism (Bowler et al. 1987a). 
Whether a similar conclusion would apply to parallel 
implementations of topological map processing must be left 
as a subject for future investigation!

CONCLUSIONS

Parallel processing hardware is now reaching the stage 
where extremely high performance computers can be built in 
a modular and cost effective way, particularly if powerful 
processing chips with good communications links, such as 
the transputer, are used. As usual the pace of algorithm 
research and software development is lagging significantly 
behind the hardware. Of the recognised approaches to 
algorithm construction, geometric parallelism, possibly 
combined with limited algorithmic parallelism, offers the 
most promising route for initial work in parallel CIS 
processing. Early areas of investigation using the Meiko 
Computing Surface include computationally intensive three 
didmensional CIS problems and in future, polygon overlay 
algorithms. Beyond these a whole range of novel and indeed 
exciting possibilities present themselves for parallel

97



search on large spatial databases, real-time data structure 
conversion, and new approaches to visualization and user 
interfacing.

REFERENCES

Baillie, C.F. 1988, Comparing Shared and Distributed Memory 
Computers: Parallel Computing, Vol. 8, pp. 101-110.

Bowler, K.C., Kenway, R.D., Pawley, G.S. and Roweth, D. 
1987a, An Introduction to OCCAM 2 Programming, Chartwell- 
Bratt, Lund.

Bowler, K.C., Bruce, A.D., Kenway, R.D., Pawley, G.S. and 
Wallace, D.J. 1987b, Exploiting Highly Concurrent Computers 
for Physics : Physics Today, October Edition.

Bowler, K.C., Kenway, R.D., Pawley, G.S. and Roweth D. 
1988, OCCAM 2 Programming Course Notes, Publications, Dept. 
of Physics, University of Edinburgh.

Dangermond, J. and Morehouse, S. 1987, Trends in Hardware 
for Geographic Information Systems : Proceedings Auto-Carto 
8, pp. 380-385, ASPRS/ACSM, Falls Church, Va.

Herring, J. 1988, TIGRIS : Topologically Integrated 
Geographic Information System : Proceedings Auto-Carto 8, 
pp. 282-291, ASPRS/ACSM, Falls Church, Va.

Jesshope, C. 1988, Transputers and Switches as Objects in 
OCCAM : Parallel Computing, Vol. 8, pp. 19-30.

Kavouras, M. and Masry S. 1987, An Information System for 
Geosciences : Design Considerations : Proceedings Auto- 
Carto 8, pp. 336-345, ASPRS/ACSM, Falls Church, Va.

McKenna, D. 1987, The Inward Spiral Method: An Improved TIN 
Generation Technique and Data Structure for Land Planning 
Applications : Proceedings Auto-Carto 8, pp. 670-679, 
ASPRS/ACSM, Falls Church, Va.

Miklosko, J. and Kotov, V.WE. (Eds.) 1984, Algorithms, 
Software and Hardware of Parallel Computers, Springer- 
Verlag, Berlin.

Norman, M. 1988, Asynchronous Communication Course Notes, 
Dept. of Physics, University of Edinburgh.

Roberts, J.B.G., Harp, J.G., Merryfield, B.C., Palmer, 
K.J., Simpson P., Ward, J.S. and Webber H.C. 1988, 
Evaluating Parallel Processors for Real-time Applications : 
Parallel Computing, Vol. 8, pp. 245-254.

Sommerville, I. and Morrison, R. 1987, Software Development 
with ADA, Addison-Wesley, Reading. Mass.

Stroud, N. and Wilson, G. (Eds.) 1987, Edinburgh Concurrent 
Supercomputer Project Newsletter No. 3, Edinburgh

98



University Computing Service.

Treleaven, P.C. 1988, Parallel Architecture Overview : 
Parallel Computing, Vol. 8, pp. 59-70.

Verts. W.T. amd Lee, C. 1988. Parallel Architectures for 
Geographic Information Systems, Technical Papers ACSM-ASPRS 
Annual Convention, Vol. 5, pp. 101-107, ACSM/ASPRS, Falls 
Church, Va.

Yalamanchi S. and Aggarwal, J.K. 1985, Analysis of a Model 
for Parallel Image Processing : Pattern Recognition, Vol. 
18, pp. 1-16.

99




