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ABSTRACT

Data structures which accurately determine spatial and topological relationships in large 
databases are crucial to future developments in automated cartography. The uniform 
grid technique presented here offers an efficient solution for intersection detection, 
which is the key issue in many problems including map overlay. Databases from cartog 
raphy, VLSI, and graphics with up to 1 million edges are used. 1,819,064 edges were 
processed to find 6,941,110 intersections in 178 seconds on a Sun 4/280 workstation. 
This data structure is also ideally suited for implementation on a parallel machine. 
When executing on a 16 processor Sequent Balance 21000, total times averaged ten 
times faster than when using only one processor. Finding all 81,373 intersections in a 
62,045 edge database took only 28 seconds elapsed time. These techniques also appear 
applicable to massively parallel SIMD (Single Instruction, Multiple Data Stream) com 
puters. We have also used these techniques to implement a prototype map overlay sys 
tem and performed preliminary tests on overlaying 2 copies of US state boundaries, with 
3660 edges in total. Finding all the intersections, given the edges in memory, took only 
1.73 seconds on a Sun 4/280. We estimate that the complete overlay would take under 
20 seconds.

INTRODUCTION

Algorithms specific to polyline intersection are particularly important for cartographic 
purposes. The classic problem of map overlay is a good example where edge intersection 
forms the core of the algorithm. The results of this paper are also useful in diverse dis 
ciplines such as graphics and VLSI design.

We are given thousands or millions of small edges, very few of which intersect, and 
must determine the pairs of them that do intersect. Clearly, a quadratic algorithm com 
paring all \~2\ pairs is not acceptable.

Useful line intersection algorithms often use sweep line techniques, such as in Nievergelt 
and Preparata (1982), and Preparata and Shamos (1985). Chazelle and Edelsbrunner 
(1988) have an algorithm that finds all K intersections of N edges in time 
F = Q(K+N\ogN). This method is optimal in the worst case, and is so fast that it
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cannot even sort the output intersections. However, this method has some limitations. 
First, it cannot find all the red-blue intersections in a set of red and blue edges without 
finding (or already knowing) all the red-red and blue-blue intersections. Second, it is 
inherently sequential.

Alternative data structures, based on hierarchical methods such as quadtrees, have also 
been used extensively, Samet (1984). They are intuitively reasonable data structures to 
use since they subdivide to spend more time on the complicated regions of the scene. 
An informal criticism of their overuse in Geographic Information Systems in given in 
Waugh (1986). A good general reference on cartographic data structures is Peucker 
(1975).

Since cartographers deal with vast amounts of data, the speed and efficiency of the algo 
rithms are of utmost importance. With the advent of parallel and supercomputers, effi 
cient parallel algorithms which are simple enough to implement, are gaining importance. 
Since this field is relatively new, few implementable algorithms exist. Some of the 
related parallel algorithms in computational geometry are as follows. Aid (1985) 
describes some parallel convex hull algorithms. Evans and Mai (1985) and Stojmenovic 
and Evans (1987) present parallel algorithms for convex hulls; however they require a 
MIMD machine, and have tested on only a few processors. Aggarwal et al (1985) give 
parallel algorithms for several problems, such as convex hulls and Voronoi diagrams. 
They assume a CREW PRAM (concurrent read exclusive write, parallel random access 
machine). This is a MIMD model. No mention is made of implementation. Although 
it is not mentioned in those papers, randomized algorithms, such as described by dark- 
son (1988a), and Clarkson and Shor (1988b) appear to lend themselves to parallelization 
sometimes. Yap (1987) considers general questions of parallelism and computational 
geometry. Hu and Foley (1985), Reif and Sen (1988), and Kaplan and Greenberg 
(1979) consider hidden surface removal. Scan conversion is considered by Fiume, Four- 
nier, and Rudolph (1983). For realistic image synthesis see Dippe and Swensen (1984).

This paper concentrates on an alternative data structure, the uniform grid. Here, a flat, 
non-hierarchical grid is superimposed on the data. The grid adapts to the data since the 
number of grid cells, or resolution, is a function of some statistic of the input data, such 
as average edge length. Each edge is entered into a list for each cell that it passes 
through. Then, in each cell, the edges in that cell are tested against each other for inter 
section. The grid is completely regular and is not finer in the denser regions of the data.

The uniform grid (in our use) was first presented in Franklin (1978) and was later 
expanded by Franklin, Akman, and Wu (1980), (1981), (1982), (1983), (1984), (1985), 
(1987), and Wu(1988) . The latter two papers used extended precision rational numbers 
and Prolog to implement map overlay. Geometric entities and relationships are 
represented in Prolog facts and algorithms are encoded in Prolog rules to perform data 
processing. Multiple precision rational arithmetic is used to calculate geometric intersec 
tions exactly and therefore properly identify all special cases of tangent conditions for 
proper handling. Thus topological consistency is guaranteed and complete stability in the 
computation of overlay is achieved.

In these papers the uniform grid was called an adaptive grid. However, there is another, 
independent and unrelated, use of the term adaptive grid in numerical analysis in the 
iterative solution of partial differential equations. Our papers present an expected linear 
time object space hidden surface algorithm that processed 10,000 random spheres 
packed ten deep in 383 seconds on a Prime 500. The idea was extended to a fast haloed 
line algorithm that was tested on 11,000 edges. The concept was applied to other prob 
lems such as point containment in polygon testing. Finally it was used, in Prolog and 
with multiple precision rational numbers in the map overlay problem in cartography.

This present paper presents experimental evidence that the uniform grid is an efficient 
means of finding intersections between edges in real world data. The uniform grid is 
similar to a quadtree is the same sense that a relational database schema is similar to a
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hierarchical schema. The power of relational databases, derived from their simplicity 
and regularity, is also becoming apparent.

The uniform grid data structure is also ideally suited to execution on a parallel machine 
because of the simple data structures. Also, it is more numerically robust than sweep- 
line algorithms that have problems. This is of importance in the cartographic domain 
because numerical instability can easily introduce topological inconsistencies which tend 
to be difficult to rectify.

The uniform grid technique is fairly general and can be used on a variety of geometric 
problems such as computing Voronoi diagrams, convex hull determination, Boolean 
combinations of polygons, etc.

INTERSECTION ALGORITHM

Assume that we have N edges of length L independently and identically distributed 
(i.i.d.) in a 1 x 1 screen. We place a G x G grid over the screen. Thus each grid cell is
of size   x  . The grid cells partition the screen without any overlaps or omissions. 
The intersection algorithm proceeds as follows.

1. For each edge, determine which cells it passes through and write ordered pairs 
(cell number, edge number).

2. Sort the list of ordered pairs by the cell number and collect the numbers of all the 
edges that pass through each cell.

3. For each cell, compare all the edges in it, pair by pair, to test for intersections. If 
the edges are a priori known to be either vertical or horizontal, the vertical edges 
are compared with the horizontal edges only. To determine if a pair of edges inter 
sect, we test each edge's endpoints against the equation of the other edge. We 
ignore calculated intersections that fall outside the current cell. This handles the 
case of some pair of edges occurring together in more than one cell.

Fig !( ). USA Map - Shifted and Overlaid on itself Fig l(b). Chickamauga Area - All 4 overlays
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THEORETICAL ANALYSIS

Let Ncit be the number of cells that an average edge passes through. The determination 
of Nc/t is similar to the Buffon's Needle Problem, McCord (1964). A simple analysis 
shows that,

Nelt = (1 + ^LG) (E9.l) 

Then Np , the total number of (cell, edge) pairs is
Np = N(l + — LG) (Eg. 2)

IT
The average number of edges per cell is

The time to calculate the (cell, edge) pairs is
TI = «Np (Eq.S) 

where a is a constant. The time to test the edges for intersections is about
J2 = 3 G 2 Ne/c (Nc,e - 1) (£0.6) 

where P is a constant. The overhead for processing the cells is
r3 = -/G 2 (Eq.r)

where -y is a constant, and the total time is
r =

This is minimized if the 2 fastest terms in the sum grow at the same speed, which occurs 

when G = min 18V#, -£-1 for some 8.

What about some cells being denser since the edges are randomly distributed? Since the 
time to process a cell depends on the square of the number of edges in that cell, an 
uneven distribution might increase the total time. However, since the edges are 
assumed independent, the number of edges per cell is Poisson distributed, and the 
expected value of the square of the number of edges equals the square of the expected 
number of edges. Therefore the expected time doesn't increase.

RESULTS

Edge Intersection

For each data set we tried many values of G to learn the variation of time with G. Table 
1 shows the results from intersecting the 116896 edges in all the 4 overlays of the Chi- 
kamauga DLG (Figure 1). There are 144,666 intersections in all, and the best time is 
37 seconds with a 325 x 325 grid. The time is within 50% of this for grids from 
175 x 175 up to 1000 x 1000, which shows the extreme insensitivity of the time to the 
grid size. This is why real scenes with dense and sparse areas can be accommodated 
efficiently.

For the USA state boundaries shifted and overlaid on themselves, the execution time is 
within 20% of the optimum from about G = 40 to G = 400 and is within a factor of two 
of the optimum from about G = 20 to G = 700. Outside these limits, the execution 
time starts to rise quickly.

The economy of the grid structure is shown by the fact that the number of comparisons 
between pairs of edges needed to isolate the intersections is about twice the number of 
the edges when using the optimal grid resolution. This behavior was also observed in 
hidden surface algorithm described in earlier publications. There is not much room for
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No. of edges 116896
Avg. edge length 0.00231
Standard deviation 0.0081
Xsects. by end pt. coincidence 13S87S
Xsects. by actual equation soln 8791
Total intersections 144666

Grid Size

50
80

100
125
175
200
275
325
400
500
625
800

1000
2000

Pairs

131462
140407
146389
153492
168341
175791
197815
212282

' 234372
263646
300413
351891
410589
704147

P/Cell

52.585
21.939
14.639
9.823
5.497
4.395
2.616
2.010
1.465
1.055
0.769
0.550
0.411
0.176

P/Edge

1.125
1.201
1.252
1.313
1.440
1.504
1.692
1.816
2.005
2.255
2.570
3.010
3.512
6.024

Grid 
Time

4.33
4.50
4.72
4.88
5.43
6.70
8.45
7.37
8.37

10.18
11.72
14.52
17.72
31.05

Sort 
Time

3.67
3.93
4.22
4.32
4.82
6.13
7.68
6.18
7.15
7.78
8.92

10.77
12.93
22.92

Xsect 
Time

182.04
90.75
67.31
51.36
36.22
35.18
31.78
23.60
21.82
20.62
20.22
21.37
23.05
29.57

Total 
Time

190.04
99.18
76.25
60.56
46.46
48.01
47.91
37.15
37.33
38.58
40.85
46.65
53.70
83.53

Table 1: Intersecting 116,896 Edges of the Chikamauga DLG 

further improvement by a hierarchical method.

The largest cartographic database was the 116,896 edges of the Chikamauga Digital 
Line Graph (DLG) from the USGS sampler tape. The average edge length was 0.0022 
and the standard deviation 0.0115, so the edges were quite variable. We used a 
325x325 grid to find all 144,666 intersections in 37.15 seconds on a Sun 4/280. Other 
results are listed in Franklin, Chandrasekhar, Kankanhalli, Seshan, Akman (1988).

One of our examples consisted of 1,819,064 edges, with an average length of 0.0012, 
forming a complete VLSI chip design. We found all 6,941,110 intersections in 178 
seconds. In this case, the program was optimized to use the orthogonality of the edges. 
The edges' lengths were quite variable, with the standard deviation being over 30 times 
the mean. This example illustrates the generality of this method and its applicability to 
other areas besides cartography.

Execution in Parallel

The uniform grid method is ideally suited to execution on a parallel machine since it 
mostly consists of two types of operations that run well in parallel: applying a function 
independently to each element of a set to generate a new set, and sorting. Determining 
which cells each edge passes through is an example of the former operation.

We implemented several versions of the algorithm on a Sequent Balance 21000 com 
puter, which contains 16 National Semiconductor 32000 processors, Sequent (1986), 
KaIIstrom(1988) and compared the elapsed time when up to 15 processors were used to
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the time for only one processor, Kankanhalli (1988). We used the 'data partitioning' 
paradigm of parallel programming which involves creating multiple, identical processes 
and assigning a portion of the data to each process. The edges are distributed among the 
processors to determine the grid cells to which each edge belongs and then the cells are 
distributed among the processors to compute the intersections. Since the Sequent Balance 
21000 is a shared memory parallel computer, shared data structures is the communica 
tion mechanism for the processors. The synchronization of the processors is achieved by 
using atomic locks. Basically, the concept of 'local processing' has been adopted in this 
algorithm to achieve parallelism.

There were several different ways of implementing the uniform grid data structure. 
First, we had a G 2MP array of cells, where G is the grid size, M is the maximum 
number of edges per cell per processor and P is the number of processors. However this 
implementation took up a lot of memory space though it obviated the use of locks. Then, 
G 2 array of linked lists was used. This also did not require locking but it was slow 
because of the dynamic allocation of shared global memory. Then it was implemented 
using a linked list of (cell,edge) pairs but this also was slow because of dynamic 
memory allocation. Finally a G 2Af array implementation was made which used atomic 
locks. This implementation gave the best results.

The speedup ratios range from 8 to 13. Figure 2 shows the results from processing 3 
overlays of the United State Geological Survey Digital Line Graph, totaling 62,045 
edges. 81,373 intersections were found. The time for one processor was 273 seconds, 
and for IS processors was 28 seconds, for a speedup of about 10. This is a rate of 7.9 
million edges and 10.5 million intersections per hour. For other data sets, these extra 
polated times would depend on those data sets' number of intersections per edge.

The speedup achieved for any parallel algorithm is dependent on the amount of 
inherently sequential computation in the algorithm, the hardware contention imposed by 
the competing processors, the overhead in creating multiple processes and the overhead 
in synchronization & communication among the multiple processes. We believe that the 
first factor is not dominant when using the uniform grid technique. The large speedups 
achieved show that the other three factors also do not affect the performance signifi 
cantly. Finally, the speedup, as a function of the number of processors, was still rising 
smoothly at 15 processors. This means that we should achieve an even bigger speedup 
on a more parallel machine.

Map Overlay

We are implementing a complete map overlay package in C on a Sun workstation. The 
input and output are in a simplified form of the Harvard Odyssey cartographic database 
format. The preliminary version emphasizes clarity at the expense of speed by 
representing the process as a pipeline of several sequential processes. Each process 
writes its output to a temporary ASCII file for the next process to read, thus incurring 
repeated I/O costs. The stages are as follows.

1. Deform: In this stage chains are broken into edges.

2. Intersect: This stage finds all intersection points between edges.

3. Connect: This stage breaks up original chains into new chains, additional break 
points being made at the intersection points.

4. Link: This stage calculates and sorts the angles between each of the chains at each 
node and the x-axis.

5. Form: This stage recognizes all polygons formed by the new chains.
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Fig 2. Time and Speedup when intersecting the 62045 edges in the Roads & 
Trails, Railroads and Pipes and Transmission Lines 9verlays of The 
Chickamauga DLG in Parallel on 1 to 15 Processors. Grid size = 250. 81,373 
intersections found.

6. Display: This displays the resulting overlaid map along with labels for each recog 
nizable polygon.

7. Timer. This sums up the time each of the first S modules takes to complete each 
individual task.

One, possibly controversial, decision, was to split the chains into the individual edges at 
the start. This makes the data more voluminous, but much simpler, since now the ele 
ments have a fixed length. After we have intersected all the edges, and split them into 
pieces which are the edges of the result, it is easy to reform the output chains.

Another advantage of using individual edges is that the algorithm will be easier to
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implement on a parallel machine for even greater speed.

We have implemented the algorithm partly on a Sun 3/50 and part on a Sun 4/280. Test 
ing all 3660 edges in both input maps to find intersections takes only 1.73 seconds on the 
Sun 4.

CONCLUSION

Our technique has been successfully used for the important problem of map overlay 
which occurs in cartography. The results indicate that this is a very robust general tech 
nique which is fast and simple. It is evident from this research that simple solutions are 
often faster than theoretically efficient but convoluted and complicated methods. Also, 
the power of randomized techniques in algorithm design for real world problems is now 
being appreciated. Our algorithm is parallelizable and shows very good speedup with 
minimal auxiliary data structures.

As mentioned before, we are investigating other problems where the uniform grid tech 
nique may be applied for inventing parallel algorithms. We feel that the uniform grid 
technique is a good technique for parallel geometric computation in the future.
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