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Abstract

Projects for the creation of large cartographic data bases and the advent of high 
volume optical disk technology create a need for structures for static mass data 
storage. This paper reviews existing approaches for structuring mass storage and 
proposes a scheme which combines the following concepts: a) separation of 
"background data" from "geographic object data"; b) use of hierarchical grid 
structures to define data buckets; c) coordinate shuffling to define keys for the spatial 
domain; d) use of efficient one-dimensional access structures (B-trees, Extendible 
Hashing); and e) pointer elimination due to the static properties of the data bases.

1. Introduction

Efforts are undertaken on both international and national levels to systematically 
collect base map information for digital data processing. The information contents of 
large area base map series are very high and the resulting data files are extremely 
voluminous. The use of adequate data base structures is thus a most important 
requirement for efficient utilization of large data bases. In recent years a multitude of 
data base models have been proposed. The present paper discusses some alternative 
storage approaches for data handling based on bulk memory spatial data bases. It is 
evident that storage efficiency cannot be defined in absolute terms, but it is 
dependent on the particular usage characteristics of the data. An example of such a 
large data base is the creation of a digital version of a worldwide 1:1 million map 
series, including hydrology, administrative boundaries, transportation features and 
relief (Bickmore 1986). It will be basically a worldwide multi-layered base for 
environmental sciences consisting of a mixture of point, line, area and volume types 
of geographic objects. As a product it is envisioned to be offered on one or multiple 
compact disks as a read-only store for easy distribution. Based on such a scenario we 
discuss some alternative storage structures for static base map elements of various 
characteristics. Dynamic map modification and updating is of no concern here; our 
aim is to provide a structure for fast search and retrieval of background elements. 
Though this information will be combined with a variety of "foreground" elements of 
the specific users, we shall disregard the aspects of foreground elements.
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2. Existing Approaches for Structuring Mass Storage

Recent efforts of data handling in computer cartography were mainly concerned with 
data structures which did not need much space on external storage devices and were 
concentrated on efficient internal processing. Among them quadtree structures are of 
special interest; they appeared in the 1970s (see a review article by Samet 1984). 
Our discussion will also include the bintree or 2-d-trie (Knowlton 1980, Tamminen 
1984, Orenstein 1982) which uses a binary rather than a quaternary tree structure, 
that is, each father node can have only two son nodes with alternate splits in each 
spatial direction. Two levels of a bintree correspond to one level of a quadtree.

Large data bases have to be stored on external storage media. Traditionally, bucket 
methods are used for this task. In the case of multidimensional data dealing with the 
geometric organization of space, bucket methods are also called cell methods 
(Tamminen 198lb). These are based on the principle of storing spatially adjacent 
objects in adjacent physical stores and pack the data into blocks or pages just large 
enough to read them into central memory by a single disk access. Various strategies 
exist to subdivide space into hierarchical buckets of cellular or grid shape.

Bucket methods can be grouped into two basic-approaches (Nievergelt et al. 1984). 
One group of methods structures the data by trees of keys and searches on the basis 
of guiding discriminators ("signposts"), while the others partition the underlying 
(coordinate) space. The latter allow access to a directory or directly to the data by 
address computation. Some structures originally developed for internal processing 
may also be used for the management of data buckets. Initial research dealt with the 
access to one-dimensional data. The structure used most often is the B-tree, which is 
a generalization of the binary search tree as adapted for external block access 
operations (Bayer and McCreight 1972). A special variant suitable for range searches 
is the B+-tree (Comer 1979). Other schemes are Extendable Hashing (Fagin et al. 
1979) which stores a bucket pointer for each potential hash value, and Linear 
Hashing (Litwin 1980) which allows hashing without a directory. Since 
multidimensional search problems are of special interest for the geo-sciences, efforts 
to develop multidimensional access methods were undertaken by both computer 
scientists and specialists in spatial data handling. Examples of structures include 
extensions of the B-tree such as the multidimensional B-tree (Scheuermann and 
Ouksel 1982) or the k-d-B-tree (Robinson 1981) as a combination of the B-tree and 
the k-d-tree (the multidimensional binary search tree; Bentley 1975). Proposed 
methods which organize data space are Multipaging (Merrett 1978, using directory 
scales), Dynamic Multipaging (Merrett and Otoo 1982), EXCELL (Tamminen 
198la; Extendable Hashing for multi-dimensional space), the Grid File (Nievergelt et 
al. 1984; similar to EXCELL, but with internal linear scales and an external 
directory) and methods of Linear Hashing (Ouksel and Scheuermann 1983, Burkhard 
1983, Orenstein 1983). The Field Tree (Frank 1983b) as a quadtree structure is 
based on a regular partitioning of space and is accessed by tree traversal. Most of 
these structures are designed to manage dynamic data bases.

Some authors deal with the problem of storing spatial objects without splitting them
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along cell borders. Most methods, however, split the objects and have to concatenate 
them each time they are extracted. Hinrichs (1985) proposed a method of storing 
objects through parameters (center point and half side-length of the enclosing box) in 
higher dimensional space. However, access becomes extensive due to conical search 
areas. Frank (1983b) and Abel and Smith (1983) used a quadtree organization of 
space to store objects in the smallest enclosing quadtree cells. Frank (1983a) 
introduced a derivation of the quadtree where the cell origins are systematically 
shifted for the respective hierarchical levels; this allows all objects to fit a bucket cell 
of appropriate size and avoids that small objects at high level quadrant borders have 
to be placed in high level cells due to the border coincidence. To our knowledge 
Frank did not follow up on this method due to the complexity of access processes 
(Frank 1983b).

Another important concept for multidimensional data handling is coordinate 
"shuffling", the operation of bitwise interleaving coordinate keys, resulting in so 
called Peano keys (Peano 1973). It was developed in the domain of GIS for the 
transformation of multidimensional space into one dimension and results in "linear 
quadtrees" (or linear bintrees; see Peuquet 1984, Samet 1984). Access on these keys 
may be provided by methods for one-dimensional data (Tamminen 198 la, Abel and 
Smith 1983). There has also been a growing interest in this concept in the domain of 
conventional data base research (Tropf and Herzog 1981, Ouksel and Scheuermann 
1983, Burkhard 1983, Orenstein 1984).

3. Hierarchical Grid Structures for Static Geographic Data Bases
The purpose at hand is to design storage strategies for spatial data on read-only 
external mass storage devices. A first requirement is to minimize both access time 
and external storage space. Under the assumption that information used for mapping 
or spatial analysis is highly clustered, bucket methods are typically used for this task.

Another major issue is the definition of the objects to be stored in the grid cell 
storage buckets. Spatial objects by definition may be of point, line, area or volume 
type. The latter three may be arbitrarily cut into parts by cellular grid systems. 
Depending on the application this may or may not be acceptable. For the purpose of 
this discussion we distinguish between those objects which can be subdivided along 
grid borders and those that should be stored in their integrity within one single data 
bucket. We call the former "background data", the latter "geographic object data". 
Background data can be stored and retrieved more efficiently as long as objects are 
not to be reconstructed.

In our task of storing large volume spatial data on read-only memory we propose to 
combine the following concepts: a) separation of "background data" from 
"geographic object data" and use of specific spatial bucket or cell methods for both 
cases; b) coordinate shuffling in the spatial domain; c) use of efficient one- 
dimensional access structures; and d) taking advantage of the static properties of the 
data to reduce storage overhead and processing time.
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In our presentation we shall proceed as follows: First we present the basic concepts 
and specific schemes for the background data (3.1), then explain the specific 
organization of the geographic object data (3.2), and close with a discussion of some 
alternatives for the organization of keys and adaptations for static data bases (3.3).

3.1 Hierarchical Bucket Methods for Storing Background Information

Background data include point features and elements of linear and area objects that 
are separated at grid cell borders. A reconstruction of object integrity and topology is 
not required. Information pertaining to adjacent objects should be stored whenever 
possible in one data bucket. For internal storage quadtree or bintree structures appear 
to be optimal. On the other hand these structures are not suited for external storage of 
the tree nodes because tree traversal is inefficient Analog to the development of the 
B-tree from the binary search tree where the number of sons of each father is so big 
as to occupy one page, we could extend a quadtree to a hierarchical grid structure 
with a whole matrix of son cells for each father cell. This minimizes the number of 
disk accesses and reduces search time not only by physical clustering of adjacent 
data, but also by minimizing reading operations in the access structure. This concept 
is illustrated in Figure 1. While solving one problem we diminish spatial flexibility, 
reduce cell occupancy and thus processing efficiency. To alleviate these problems 
we separate the organization in the space domain from the organization of bucket 
access: Space is subdivided into hierarchical cells (e.g., quadtrees, bintrees) which 
are then managed by shuffled keys and one-dimensional access structures (e.g., B- 
trees). The specific cell units represent data buckets containing background elements 
in form of point and string data. The size of the cells is a function of the information 
density in space. The model used most frequently is the quadtree. However, in cases 
where other than raster type data are to be handled bintrees are even more flexible. If 
a bucket is overfilled, it is first split into two sons instead of four. Figure 2 shows the 
bintree for a hypothetical map. All cells are labeled by shuffled codes interleaving 
bits in x and y directions. The number of digits used implicitly indicates the cell size 
or hierarchical level. The shuffled codes of the data buckets are stored in B-trees (or 
other access structures) where the B-tree elements again are packed in pages or 
"index-buckets" (Figure 3a).

3.2 Storing Geographic Object Data
For the storage of spatially extended objects which have to be handled as integral 
entities we will use an adaptation of the cell organization proposed by Frank (1983a). 
In order to find a cell into which an object of arbitrary form and size can fit, cells of 
all levels of the hierarchy may be used in the same structure. A regular quadtree is 
chosen as proposed by Abel and Smith (1983), but with a displacement of the grid at 
each level. Small objects crossing high level borders now fit lower level cells, thus 
avoiding to force too many objects into the top cells. Instead of an implementation 
of rather complicated "trees" where sons can belong to two or four fathers (i.e., 
graphs), we propose-to use bit interleaving of coordinates. As point of reference we
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Figure 1: Hierarchical grid structure

either choose the lower left comer or the center of each cell with the addition of a 
suffix specifying the level and implicitly the displacement with respect to a regular 
matrix. In the former case each cell has a unique key which avoids the need for a 
level suffix. This scheme is illustrated in Figure 4. The area of interest is bound by 
heavy lines. In the example this is a single cell of Level 1; it is overlaid by cells of 
Levels 2 and 3. Objects that fit into cells of Level 3 are addressed by Level 3 keys, 
objects that cross Level 3 borders in cells of Levels 2 or 1. Cells at all levels include 
pointers to a data store where the sequence order is defined by the shuffled location 
keys of the lower left corner of the cells. Not all values of the domain of the keys are 
actually used. Each father has 9 sons, of which 4 sons are shared with one neighbor 
and 4 sons with three neighbors. Range searches are performed by the sequential 
traversal of the tree where each father is visited after the first three sons and before 
the remaining six sons.

The list of shuffled codes again is sorted and packed into B-tree pages. Each 
shuffled code is associated by a pointer to a data bucket Each bucket may include a 
number of objects of various types: point, line area or volume objects with or without 
topological identifiers. For a polygonal network data buckets may include both arc
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Figure 2: Bintree organization for background data (empty cells are shaded)

(1-cell) and polygon (2-cell) objects. Arc objects may be defined by a sequence of 
points and pointers to adjacent arcs and polygons, polygon objects by strings of arc 
identifiers, etc.

In general, a polygon description may not happen to be stored in the same bucket as 
its arcs. It may, therefore, be reasonable to define a unique object identifier for all 
objects of any type. This identifier consists of the bucket code plus a sequential 
counter within each bucket. Such a scheme enables searches based on objects 
independent of spatial criteria.

3.3 Alternative Key Organizations

In the previous discussion we have proposed B-trees as an index structure to the data 
buckets. Due to the static nature of the data base, the presorted buckets are stored at 
fixed physical locations on a mass storage device. Since the data are sorted by 
shuffled keys, this results in the important advantage that sequential searches in space
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Figure 3: Access structures for the bintree in Figure 2: a) B-tree b) EXCELL
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Figure 4: Hierarchically displaced quadtree structure for geographic object data

can be executed by sequential reading from disk. We therefore do not need a B+-tree 
for range search as proposed by Abel (1984). Also, if the structure of the B-tree is 
exhaustively defined, all pointers to B-tree pages and data buckets can be eliminated 
since their external storage position can be calculated from the position of the cell in 
the B-tree. Analog to "linear quadtrees" we call this structure a "linear B-tree".

Under certain circumstances the use of Extendible Hashing (EXCELL, Tamminen 
198la) may be a valid alternative. In contrast to the B-tree all area keys of smallest 
cell size are members of the directory. For higher level cells all pointers of its 
constituting subcells point to the same bucket. Area cells of any size can thus be 
addressed directly. For each area unit a pointer to the respective bucket location on 
mass storage is maintained. Figure 3b visualizes this alternative. The Extendible
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Hashing option may be inferior to the B-tree option with respect to storage 
requirements but superior for random data access time. As we have pointed out 
above, not all values in the domain of keys are actually occupied in the case of 
geographic object storage. Since Extendable Hashing, however, uses entries for all 
potential keys, storage is inefficient. It is therefore advisable to compress the shuffled 
keys by a compression function. For each cell the compressed keys then indicate the 
position of the pointer to the bucket in mass storage.

4. Conclusions

We have discussed various storage structures for read-only spatial bulk data. We 
recommend to separate background data from geographic object data. Background 
data (points and spaghetti lines cut at cell borders) are preferably stored in spatial 
buckets defined by bintrees which are labeled by shuffled area codes and organized 
in a B-tree structure. Due to the static nature of our task, pointers to buckets are not 
required. A valid alternative is the use of Extendible Hashing (EXCELL). 
Geographic object data are packed in hierarchically displaced structures of quadtree 
cells, which are identified by shuffled area codes. The sorted codes are organized 
either for B-tree or Extendible Hashing access. In the latter case compression of 
shuffled keys is advisable. In a static environment all proposed structures allow for 
sequential retrieval of data buckets without the use of an index structure. Final 
decisions on the type of structures depend on the specifics of the map data to be 
recorded and the circumstances of their use. A major decision will be as to which 
elements will be stored as background or geographic object data. Other parameters 
are the level of detail to be recorded, i.e., the total volume of background or object 
data. Given this quantity for both types of stores, a decision has to be taken with 
respect to the cell resolution for background and object stores; this decision is related 
to the size of the data buckets used.

Future efforts shall be devoted to the determination of the specific parameters of a 
real-world project and the analysis of its specific usage profile. Additional work 
relates to the creation of algorithms for the construction of the static data base and to 
system implementation and testing.
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