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Abstract
Hashing techniques are reviewed that are applicable to the organization and 

indexing of spatial data. An adaptive file organization scheme for polygon data is 
presented that is based on extendable hashing and interpolation-based index 
maintenance. This scheme aims to locate a record with a given key using an 
average of one disk access, and at most two. It also aims to process search by 
location and set operations efficiently. The proposed scheme has been shown to
perform better than the B+-tree or the EXCELL methods in access efficiency and 
storage utilization.

1. Introduction
This paper is concerned with organizing and indexing of spatial data. 

Spatial data has extensive applications such as geographic information systems and 
computer aided design and drafting. A characteristic of spatial data is that the file 
size is generally very large and users wish to locate data not only by attribute but 
also by location. The primary interest of this paper is in representing a polygon 
network which is a set of polygons that totally partitions a study area. A common 
method for storing polygons is a series of vectors which define the polygon 
boundaries. This method has serious shortcomings when operations such as search 
by location and polygon intersection or overlays are encountered. Alternatively 
polygon data can be represented in raster format.

A method of representing a polygon network that has seen increasing 
attention is the quadtree data structure [11]. In this method a region is successively 
subdivided into equal sized quadrants until each quadrant has a constant value. 
Large regions can then be represented by a single node in the resulting tree 
structure. Furthermore the location of a node in the tree is related to the location 
of the corresponding object in the region concerned. Additionally, set operations 
are easily performed using a tree traversal technique.

One of the drawbacks of quadtrees is that data stored in a tree format may 
take many memory accesses to determine the location of a specific object. The 
actual number of memory accesses, of course, will depend on the depth of the tree 
where the specific object is located. For small amounts of data where the tree can 
be stored in main memory this is adequate; however, for large files the data must 
reside in a bulk storage device like a magnetic or optical disk making the search 
time prohibitively long.

One technique to overcome this problem is to use a linear quadtree [11] 
where the tree is stored as a sequence of terminal nodes and the order of the nodes 
is related to the location of the object. The problem then occurs of how to 
organize the terminal nodes so that each record can be located with a minimum
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number of disk accesses. Furthermore, the technique must be dynamic so that as 
data is added and deleted the files are expanded and contracted while the spatial 
relationships are maintained. Furthermore, it should be impossible to overload 
the system, in the sense that there should be no upper bound on the amount of data 
that can be accommodated.

In order to better understand the scheme to be presented a review of 
hashing techniques will be given in the next section. It focuses mainly on dynamic 
hashing, particularly extendable hashing and linear hashing, which turns out to be 
very useful for implementing cell methods.

2. Dynamic Hashing and Cell Methods
To be effective, a file organization scheme should allow both random and 

sequential access to records in the file and be able to support dynamic file 
maintenance. With the advent of direct access storage devices, several efficient 
file organization schemes have emerged [7]. Among them, balanced tree 
organizations and hashing schemes have been prominent.

A tree structure is inherently dynamic in the sense that the number of nodes 
in a tree varies with insertion and deletion of records. In particular, the B-tree [1] 
provides an efficient mechanism for structuring dynamic files. It gracefully 
adapts its shape in response to insertions and deletions of records and supports 
retrieval of a record with O(log n) disk accesses, where n is the number of records 
in the file. Although this logarithmic cost of tree structured files is attractive when 
compared with the O(ri) of sequential files, it is still far greater than the (9(1) of 
direct access methods. Hashing is a popular technique for organizing direct access 
files.

Nevertheless, traditional hashing schemes have a major disadvantage in that 
storage allocation for the hash table is static. That is, the size of a file must be 
estimated in advance and storage space must be allocated for the whole file at once. 
Thus, a high estimate of the data volume results in wasted space, while a low 
estimate results in either a costly reorganization of the whole file through 
rehashing or the attachment of overflow buckets, which slowly degrades the O(l) 
access time toward O(n) in the worst case. Therefore, when the nature of the data 
is unknown or the file is dynamic, hashing has not been a good choice.

Recently, however, several dynamic hashing [11] (sometimes called virtual 
hashing) schemes have been developed that overcome the difficulty in maintaining 
large dynamic files. Their main characteristic is that the storage space allocated to 
the file can be increased or decreased without reorganizing the whole file. 
Dynamic hashing schemes can be categorized into two types: those that maintain 
some kind of directory, the size of which varies with the file size, and those that do 
not use a directory. Those with a directory resolve collisions by splitting the 
overflow address. Those without a directory resolve the overflow condition by 
chaining the overflow address. A chain is split, however, when the global storage 
utilization factor exceeds a predefined upper threshold.

The most noticeable file organization schemes of the first type include 
virtual hashing [9], dynamic hashing [8] and extendible hashing [6]. Linear 
hashing [10] and interpolation-based index maintenance [2] are schemes of the 
second type. Among these new schemes, of particular interest are extendible
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hashing, linear hashing and interpolation-based index maintenance that form the 
basis of the file organization scheme proposed in this paper.
Extendible Hashing

Extendible hashing has been designed to retrieve the data associated with a 
given key with two disk accesses, i.e., one access to retrieve the desired part of the 
directory and another to retrieve the data bucket that contains the key. Extendible 
hashing achieves its goal by merging the concepts of a radix search tree and 
hashing. An intuitive description of how these two file schemes have been merged 
into extendible hashing is now presented.

Radix search trees, which are naturally extendible, can be modified to yield 
optimum speed merely by having a pointer for each leaf node. Having a pointer 
for each leaf node has the effect of flattening the tree forcing it to be degenerate. 
Next, as for hashing schemes, in order to prevent their performance from 
deteriorating in a dynamic environment, a mechanism which ensures that the hash 
table remains balanced under insertions and deletions of records is desired. In 
extendible hashing, this is achieved by introducing the concept of a degenerate 
radix search tree to the hash table. In order to make the hash table extendible 
while the hash function is kept unchanged, the partition of the hash address space 
must have a variable number of variable sized blocks. It starts with a small 
number of blocks, and if a data bucket overflows, the partition is changed by 
introducing new boundaries so that in regions where keys cluster the partition is 
finer than in regions where keys are sparse.

Among various partition techniques, the buddy system partition is 
recommended for its simplicity. Then, when a data bucket overflows, the 
corresponding block in the address space is halved, a new data bucket is added, and 
only those keys in the halved block are reorganized. If a bucket underflows as a 
result of deletions and its buddy is underfilled as well, then the two buckets can be 
coalesced into one, decreasing the number of blocks in the partition by one.

The buddy system partition of the hash address space results in the same 
effect as a radix search tree with radix r = 2 over the alphabet {0,1}. Thus, the 
buddy system partition can be implemented in a hash table using a directory with
2^ entries, where d is the depth of the buddy system partition, or equivalently, the 
depth of the radix search tree. Then, the directory allows the d leftmost bits of a 
key to be taken as an index to the directory. If the depth of the partition increases, 
the directory doubles in size. Although the directory may become large and have 
to be kept in external storage, it is normally accessible with one disk I/O operation 
without using a special algorithm since the bit pattern of a key is used as an index to 
the directory. Therefore, each record in a file can be retrieved in two disk 
accesses with extendible hashing.
Linear Hashing

Linear hashing is particularly remarkable because it maintains good 
performance without using an explicit directory. The major advantages of linear 
hashing are: (1) the file size grows and shrinks gracefully, (2) there is no 
directory to be kept, and (3) the utilization of the allocated storage is controlled. 
For an insight into the design principles of linear hashing, consider the following 
situation. Assume a set of records is being inserted into a number of indexed
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buckets, using some hash function, and that a collision occurs at the insertion of a 
record with a given key. Furthermore, assume a bucket split is performed to 
avoid the accumulation of overflow records. A natural approach would be to split 
the bucket in which the collision occurs. However, this approach calls for some 
sort of directory since buckets will be chosen randomly for a split.

Next, consider the following approach. Suppose that splits are performed 
on buckets in the order of the index, regardless of which bucket a collision occurs 
in. That is, first, bucket 1 is split into buckets 1 and N+l, next, bucket 2 is split into 
buckets 2 and N+2, and so on, until bucket N is split into buckets N and 2N, After 
each of the N buckets is split, bucket 1 is chosen again for a split, this time, into 
buckets 1 and 2N+1, and so on. Since the index of the bucket to be split is 
predefined while the index of the bucket with a collision is random, a bucket with a 
collision is split not necessarily when the collision occurs but with some delay. In 
the meantime, overflow buckets are attached to resolve the collision. The result is 
that the file becomes progressively larger and no directory is required. Linear 
hashing is based on this approach.

The insertion of a record with a given key is also simple. First, the access 
algorithm determines which chain should contain the specified key. If the key is 
not present, the record with the given key is inserted and the load factor is updated 
accordingly. Next, if the load factor exceeds the upper limit, a chain split is 
performed.

The deletion operation is similar to insertion. First, the access algorithm is 
utilized to determine which chain contains the key to be deleted. If the key is found 
in the chain, it is removed from the file and the load factor is updated. Then, if the 
load factor falls below the lower limit, merging of two chains is triggered.

With linear hashing the allocated storage increases linearly, i.e., one chain 
at a time, maintaining a good overall storage utilization. Although overflow keys 
are moved to primary buckets with some delay, the rate of overflow keys usually 
remains small if the bucket capacity is much larger than 1 [10]. Thus, it is 
reasonable to expect that a key is normally found in one disk access.

Both extendible hashing and linear hashing lend themselves to an adaptable 
cell method of structuring ^-dimensional data. The cell method organizes data by 
cells that are produced by dividing the study area into a regular grid of intervals 
corresponding to units of external storage such as disk blocks. Cell methods are 
attractive because cells capture locality. In fact, most of the successful cell 
methods that have been implemented are multi-dimensional variations of either 
extendible hashing or linear hashing. The EXCELL method [12, 13, 14] is an 
adaptation of extendible hashing to ^-dimensional data, and the interpolation-based 
index maintenance [2] is a ^-dimensional generalization of linear hashing.

Interpolation-based Index Maintenance
Interpolation-based index maintenance (hereafter, interpolation hashing) is 

a multi-dimensional variation of linear hashing. It has been designed to handle 
range queries efficiently while preserving the performance of linear hashing in 
terms of the number of disk accesses required for insertion, deletion and retrieval 
of a record. Similar to the EXCELL method, interpolation hashing handles range
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search efficiently by associating each chain, i.e., each data bucket, with a cell in the 
search space.

The association between chains and cells of the search space has been made 
available to interpolation hashing through modification of the split conditions of 
linear hashing. When a chain is split into two, the split conditions of interpolation 
hashing distributes the keys into two chains such that the smaller keys remain in 
the same chain while the larger ones move to the new chain. In other words, the 
split conditions of interpolation hashing examine the leftmost bits of the key to 
determine which chain should contain the key, in the same way as the EXCELL 
method does.

Another similarity of interpolation hashing to the EXCELL method is 
found in the way it implements hashing. Both methods produce keys for k- 
dimensional data by shuffling their k coordinates, i.e., by taking the binary 
representation of the coordinates for each of the k axes and interleaving them. The 
shuffling of coordinates, together with the modified split conditions, produces for 
interpolation hashing a grid partition of the search space at intervals determined 
by a radix. Consequently, as in the EXCELL method, cell division lines with 
interpolation hashing are always equidistant, and the axis for a split is chosen in a 
cyclic fashion. Hence, the cells of the search space have the same shape as those of 
the EXCELL method; namely, the cells are either square or rectangular with their 
length twice as long as their width.

The major difference between interpolation hashing and the EXCELL 
method is that the correspondence between cells and chains is given by formulas 
rather than by a directory. Furthermore, with interpolation hashing the 
relationship between chains and cells of the study area is a one-to-one mapping in 
contrast to the one-to-many mapping between buckets and cells with the EXCELL 
method. It should be also noted that with interpolation hashing there exist at most 
two different sizes of cells at any moment. Besides, with interpolation hashing the 
number of cells of the search space grows by one while with the EXCELL method 
the number of cells grows by doubling.
Comparison

Each of the cell methods discussed so far has its advantages and 
disadvantages. Methods based on linear hashing provide for linear growth of the 
file without using a directory. In contrast, methods based on extendible hashing 
have overhead in terms of a directory. Particularly, with the EXCELL method, 
the directory may become large and unwieldy if the data is not evenly distributed 
over the search space.

Linear hashing based methods, however, usually have overflow buckets 
attached to their chains and may result in a file with unbalanced bucket occupancy. 
Especially, a non-uniform distribution of data may force linear hashing based 
methods to keep many overflow buckets as well as many underfilled primary 
buckets at the same time. On the other hand, with methods based on extendible 
hashing, the occupancy of data buckets is significantly more uniform because 
extendible hashing leads to a partition of the search space into blocks of a variable 
number of cells.
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Each method behaves well for data that is uniformly distributed over the 
study area. The worst case occurs when data is non-uniformly distributed. In 
order to improve the performance in the worst case, it is desirable to develop a 
method that provides a compromise in the tradeoff between extendible hashing 
based methods and linear hashing based methods, namely, the tradeoff between the 
overhead of maintaining a large directory and the advantages of balancing bucket 
occupancy.

If it can be assumed that the data density of a particular region is more or 
less the same as that of its neighbours, a file structure that combines the principles 
of extendible hashing and linear hashing may be useful. That is, a new cell method 
may be developed by modifying linear hashing so that it has a directory and 
resolves collisions by splitting the address space instead of chaining until the 
directory reaches a predefined maximum depth. Typically, the maximum depth 
of a directory will be defined such that the directory may reside in main memory. 
Equivalently, a new method may be developed by modifying extendible hashing so 
that when the depth of the directory exceeds the predefined value, chaining of the 
overflow address is used instead of indefinitely expanding the directory. This new 
cell method will reduce the effect of a single local variation of data density on the 
file structure, achieve more uniform bucket occupancy than when linear hashing 
alone is applied, and retrieve each record in a file with one disk access in general. 
From this point of view, a new cell method which merges the concepts of 
extendible hashing and linear hashing is proposed. The resulting file scheme 
incorporates the features of both the EXCELL method and interpolation hashing.

3. Definitions and Notation
Let the study area be an image of 2n x 2n unit square pixels that intersects a 

polygon network, and let each of the pixels have a color or name associated with it. 
Furthermore, let the polygon network be represented by a linear quadtree. To 
yield an arbitrary but consistent total ordering among the blocks of a quadtree, an 
order preserving hash function, s, is used. The key produced by s is essentially the 
same as the locational code of the block in a linear quadtree [5]. Now, the file that 
represents a quadtree encoded polygon network is given by a set of 3-tuples 
containing the key, size and color for each quadtree node.

In order to structure a file using an adaptive cell method, the study area is 
partitioned into a set of blocks and/or subblocks which are defined in the following 
way:

A block of depth d, 0 < d < maxd < 2 n, where maxd is the predefined 
maximum depth of a block partition, is a rectangular region in the study area 
with a standard shape and a standard location that are the same as those of a 
region produced by recursively halving the study area d times with lines 
alternately perpendicular to the x and y axes. A block with its depth equal to 
maxd is called a minimal block.

A subblock of depth d, where maxd < d < 2 n, is a rectangular region in 
the study area with a shape and location that are the same as those of a region 
produced by recursively halving the study area d times with lines alternately 
perpendicular to the x and y axes. Within each minimal block there exist at 
most two different depths of subblocks, i.e., d1 and d" such that d" = d' + 1.
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Throughout this paper, maxd will be used to denote the predefined maximum 
depth of a block partition.

A fixed data bucket is a bucket which contains no more than a predefined 
number of records, b, and an expandable data bucket is a bucket which may 
contain more than b records by attaching one or more overflow fields to it. An 
adaptive cell method of organizing a file is an abstract data type that:

1. guarantees:
a) for every cell and every record contained therein that the order of the 

keys of the records is the same as the order of the indices of the cells.
b) for every subblock of a minimum block and every record contained 

therein that the order of the keys of the records is the same as the order of the 
indices of the subblocks.

2. asserts that every block of depth d has exclusively one fixed data bucket 
associated with it if d < maxd; otherwise (the case of a minimal block), it has 
associated with it either a single fixed bucket exclusively or two or more 
expandable buckets that are contiguously located in physical memory such that:

a) each expandable bucket is exclusively associated with exactly one 
subblock of the minimal block, and

b) the overall load factor, i.e., the ratio of the number of existing records 
to the number of slots available, of these expandable buckets is within some 
predefined range.

4. Mapping between Regions and Data Buckets
Ordinarily the set of records in a file is distributed over a number of data 

buckets, and each data bucket has associated with it a block or a subblock in the 
study area. The mapping between blocks and data buckets is achieved by a 
directory. A directory is a set of elements, each of which corresponds to a cell of 
size 22n-d, where d is the maximum of the depths of the existing blocks. Thus, a 
directory has associated with it a depth whose value is the same as d.

Each element of a directory has a pointer to a data bucket, or a set of 
buckets, that contains records describing the quadtree leaf nodes which intersect 
the corresponding cell in the study area. At depth d of a directory, there are
altogether 2^ pointers, indexed from 0 to 2^-1, which are not necessarily unique. 
The pointers of a directory are indexed in such a manner that a data bucket or a set 
of data buckets pointed to by a pointer with an index i contains all the records 
whose keys are prefixed with bits that are identical to the binary representation of 
/. That is, a data bucket or a set of data buckets pointed to by pointer 0 contains all 
the keys that start with d consecutive "0" bits, a data bucket pointed to by pointer 1 
contains all the keys that start with d - 1 consecutive "0" bits followed by a "1" bit, 
and so on. Thus, die pointer / is guaranteed to find all the keys whose first d bits 
agree with the binary representation of i. This indexing scheme is in fact 
equivalent to a Morton sequence [11] and naturally satisfies the first of the 
requirements in Section 3.

The mapping between directory elements and data buckets, or sets of data 
buckets, is many-to-one. Note that all the records contained in a data bucket of 
depth d have the same bit pattern in their leftmost d bits. The correspondence 
between subblocks and expandable data buckets, however, is not shown in the 
directory. That is, the corresponding pointer in the directory points to the starting
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address of a set of buckets that are physically located together, but it does not 
specify the correspondence between each of the subblocks and data buckets.

How the mapping between subblocks and data buckets are achieved will 
now be described. The subblocks of a minimal block are indexed in a similar 
manner as the cells corresponding to directory elements are indexed. In fact, 
when all the subblocks are the same size, they are indexed in exactly the same 
manner. However, when there exist two different sizes of subblocks, the larger 
subblocks have two candidates for their index. In that case, the smaller of the two 
is selected for the index of the subblock. As a result, when subblocks are of 
different sizes, the indexes of subblocks are not continuous.

Every subblock has an expandable data bucket associated with it. The keys 
of the records contained in a subblock of depth d have the same bit pattern in their 
leftmost d bit places. More explicitly, their leftmost maxd bits agree with the 
index of the minimal block the subblock belongs to, and the next (d - maxd) bits 
agree with the index of the subblock itself. Now, the mapping between subblocks 
and buckets is achieved by numbering each of the buckets that belongs to the same 
minimal block in a specific way as follows: Let a data bucket D be associated with 
a subblock whose index is i. Furthermore, let the maximum depth of existing 
subblocks be d. Then, i can be represented by a bit string S which is (d - maxd) bits 
long. Next, let k be a number represented by a bit string 5" which is the reversed 
bit string of 5. Then, k is the bucket number of D, i.e., D is the (k + \)st of the set 
of buckets that are contiguously located. The proof of this "reversed bit pattern" 
relation between i and k can be easily shown by induction, see [2] for a formal 
proof.

The proposed file organization scheme allows the file structure to adapt its 
shape automatically to the nature of the data to be stored, i.e., the amount and the 
distribution pattern. The adaptability of the scheme is obtained mainly by a 
dynamic partition of the data space, which is implemented by splitting and 
merging mechanisms, the details of which are given in [4], As for the 
performance of the proposed scheme in terms of the variety of spatial queries 
supported and the access efficiency for single record retrieval, see [3, 4].

5. Conclusion
In conclusion, hashing techniques have been reviewed with regard to their 

use in organizing spatial data. It has been shown how extendible hashing and 
interpolation hashing can be combined to obtain better performance in terms of 
the number of disk accesses for single record retrieval. The resulting scheme is an 
adaptive cell method that normally retrieves a record with a given key with one 
disk access or at most two, maintaining a high storage utilization ratio.
Additionally, compared with the B+-tree structure which is often used in 
organizing quadtree nodes, the proposed scheme has the advantage of being a cell 
method in that set operations and range search can be efficiently performed.
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