
THE DESIGN OF A SPATIAL DATABASE MANAGEMENT SYSTEM

Qireing Chen
National Land Information System* Beijing* China

ABSTRACT

The design principle of an integrated Spatial DBMS is
described. Issues covered by this paper include action
capabilities* object-oriented paradigm* virtual object*
and the management of check-out environment. This work is
issued upon awareness of the weakness of present DBMS in
supporting CIS* which may be viewed as a further step to
the compromise of database principles and 6IS requirements.

INTRODUCTION

The Chinese National Land Information System contains data
in raster* vector and tabular forms* captured from present
maps* satellite images* photogrammetry films and census,
corresponding to 1:1000*000* 1:250*000* 1:50*OOO* 1:10*000
scale maps. The core of the system is a spatial DBMS.

It is not our intention to discuss in this paper the well
established issues such as spatial data structure* vector*
raster and tabular data handling* searching algorithms*
graphic and image display* . . . etc. In fact* most of the
spatial DBMS's currently in operation are built with cer
tain loosely coupled components* there lacks an integrated
management for a system as a whole* and the transactions
utilizing the data are normally out of the system control.
Upon awareness of this situation in designing a spatial
DBMS we emphasize the following principles :

- The integration of the system.

- Action capabilities of the system for managing applica
tion tasks and transforming data processing to data
accessing* therefore providing high level user interface.

The corresponding topics we shall discuss in this paper are:
- Action capabilities of the system*
- Object—oriented paradigm*
- Virtual object*
- The management of check-out environment.

ACTION CAPABILITIES

Integrating action capabilities to GIS's is required by
providing high level user interface and improving system
consistency* since handling application tasks outside the
system framework makes it considerably difficult to maintain

423

data integrity and handle task-oriented constraints. In our
approach> facilities for doing so include :

(1) The Trigger Manager CMelk 83a-b]. offering a system
designer the flexibility of utilizing various modularized
actions under various conditions. A trigger is specified in
a similar way to an AI production rule, as P —> F , meaning

if (P) then do (F>
Using a specification language, a user can predefine nece
ssary actions to be activated automatically on certain dete
cted system states, or upon execution of certain operations.
Thus for example* if a highway under planning is canceled,
under the trigger mechanism. the deletion would be
propagated to all the coverages where corresponding lines
were drawn. The main problem of this approach consists in
the computation cost of the alerting processing.

(2) The Process Handler, which may be viewed as a mapping
mechanism from a conceptual level task specification (by
users) into its implementation (here is a brief introduction,
for more detail, refer to author's another paper CChen 85bD).

A "process" is a linguistic description of a net modelling a
task and consisting of a set of decision/action modules with
certain conditional linkage; these actions may utilize any
domain knowledge or data and carry out update effects to the
system state. The specification of a "process" includes :

- a list of actions involved.
- a net definition specifying the internal linkage among the

actions and the control flow.
-'the linker definitions describing the conditions for each

possible path in the net.

Ihis information is given in the form of relations. The net
specification system is based on the following concepts :

1. Net—objects, denoting actions, linkers and sub-nets which
are represented by expressions, and

2. Net forming operations for constructing nets, which map
net-objects to net-objects in general.

Thus the proposed net specification system is founded on
the use of a fixed set of combining forms called path forms.
A new net can be built from existing ones hierarchically or
recursively by means of path forms and simple definitions.

For example, in the net expression

A > (pO)B > CC; D] > (pl)-CA; (pi); tt>

actions A and B is composed through a linker (pO). where
certain link condition and termination mode are specified;
C and 0 are carried out in parallel (serializable); the
conditions stated in linker (pi) are checked against the

424

current state to determine whether go back to execute
action A, recheck the conditions, or exit.

Thus a generalized Spatial DBMS offers an integrated
management to three kinds of objects :

(1> Data/knowledge bases*
(2) A collection of action modules,
(3) A set of operational scheme specifications.

This approach provides a precise formalism for task specifi
cation* under which each operational scheme is treated as an
integrated object within the system framework* which makes
it more reliable to control the data integration and easier
to define task-oriented constraints* and can enhance the
flexibility and extendability of the system to accommodate
applications in multiple domains.

OBJECT-ORIENTED DATA MANAGEMENT

Object-Oriented (O-O) approach is particularly significant
to GIS's mixed with a variety of objects in raster, vector,
table* . . .forms, which are stored as different structures
and manipulated in different ways.

From a historical perspective, a number of related notions
have been associated with the 0—0 approach, such as :

- data abstraction and encapsulation*
- object identity independent of (mutable) property values.
- properties inheritance*
- message*
- overloading*
- late binding,
- interactive interfaces with windows* menus and mice.

In the object-oriented programming paradigm* reality is rep
resented in terms of objects as well as their relationships.
Each object has an associated set of procedures called
methods denoting its dynamic behaviors. The manipulation of
objects is made by applying the methods on them* referred to
as "sending the objects a message" CCox 843.

Unlike the usual operator/operand model* which treats opera
tors and operands as if they were independent* in the above
message/object approach* an object instance records its type
(class) explicitly* which is used to determine the set of
legal operations on the objects of this class, and the type
dependencies become permanently encapsulated within classes.
This concept is coincident with a "save" database design
principle : localization CRid 831.

In the object—oriented semantic modelling paradigm* an impor
tant feature is the inheritance network whereby an object can
be declared as a specialization of other objects* therefore
inheriting their behavioral properties. This feature allows

425

new classes to be built on top of olderi less specialized
classes instead of being rewritten from scratch. The inheri
tance network is declared by means of the infix operator
"isa". The clause

object_A isa object_AA & object_BB & ...

implies inheritance to A from its ancestor AA or 8B all the
methods and constraints. The "isa" relationship is not
symmetric, but transitive, in a sense that an "isa" link
can be resulted from the transitive composition of others
without redundant declarations. When an object has more
then one ancestors* we first determine the order of the
ancestors* then use a so called "upward-first" search
strategy* starting from checking the first available
ancestor* observe to see whether it is a root (no further
ancestor remained)* if not* move upward until either the
matching succeeds or backtrack to try the next possible
ancestor at the highest possible ancestry level.

In fact we use the 0-0 approach at two levels :
- First we view raster coverages, vector coverages*

relations*... etc as different types of objects* and define
a set of legal operations for each of them. Thus a high-
level* generic command is interpreted according to its
objective variable* and executed by invoking special
object-oriented procedures.

- Second* we define objects according to the problem domains*
or simply* on tasks* since certain operations are nece
ssary for certain applications* but illegal for others.

In GIS applications we must pay attention to the multiple
view of a data set. For example* a base data set for a
digital terrain model can be represented as an image (raster
object)* a map with contour lines (vector object)* or a
table of data items (table object)* each is considered as
different type object and associated with different set
of operations. Furthermore* each type of objects mentioned
above* such as vector coverage type* must be further classi
fied into various subtypes. We see for example* certain
operations defined on large scale maps* are meaningless for
small scale maps. With a fine 0-0 management* a spatial
database is more distinct and can be used more safely.

VIRTUAL OBJECTS (VO's)

The introduction of VO aims at providing high-level and
user-friendly interface* and reducing data redundancy.

VO's contain certain derived data* which may or may not be
actually filed and physically stored until needed* but can
be directly accessed in terms of usual query commands* thus
providing a link between data access and data processing.
The instance of a VO is derived from the instances of other
(source) objects* and instantiated by carrying out an action

426

thus representing the resulting data of that action. Note
that VO's we discuss here are more general than relational
views. As relational calculus only forms a subset of the
general function mapping, views only form a subset of VO's.

The declaration of a VO contains structure, source objects,
mapping rules or procedures and so on. The source objects
can be actual or virtual or a mixture of both* thus a VO
may be defined hierarchically.

The instance of a VO has a life time which extends over a
single task. Its refreshment may adopt one of the following
strategies : (1) when it is accessed after the alteration of
its source objects; (2) by demand. During a tast, the cost
of recomputating VO's can be reduced by introducing a mecha
nism called "life flag". The life flag is a property of a VO,
indicating whether this object has a valid (live) current
instance. For each actual or virtual object a possible list
of its "directly dependent virtual objects" (DDVO) is gene
rated automatically by the system from all the VO declara
tions. For an actual object, any updating automatically
triggers a kill operation, turning off the life flag of its
direct dependents (if any). For a VO, any kill operation
propagates through its own direct dependents (if any). Thus
updating an actual object will kill all its virtual
dependents hierarchically. Thereby the recomputation of a
live VO, which may be directly accessed or indirectly
referenced as the source object of others, can be eliminated.

The constraints defined on a VO is interpreted as the post
condition of its mapping action (for validating the
instance). There is no update operation defined on VO's.

This concept has played an important role in developing our
GIS. Under this approach, results for many operations, such
as windowing, feature extracting, merging, can be handled
in a unified fashion, as if they were originally stored in
the system. Even the multiple views (image, line map, . . .) to
a base data set may be considered as VO's. Thus, by convey
ing data processing results to users in the form of answer
ing (juries, the system usability can be extended considerab
ly, particularly for those who are not computer specialists.

In addition this approach offers the following advantages :

- A VO is a more feasible entity than an action. A VO has a
structure definition/ a printing format, can/ flexibly,
either be used as a source object for other VO's, or be
involved in any tasks.

- VO provides a natural way to accomplish rule localization.
- Duplicate recomputation of VO's in a task can be reduced.

DYNAMICALLY DISTRIBUTED DATABASE WINDOWS

The spatial data processing requires a significantly diffe-

427

rent database architecture in buffering and usei—interfacing
from that developed for conventional business applications,
since
- A CIS transaction typically involves much bigger data sets
and lasts a much longer time. This feature requires a
precise management for the data check-out environment,
which allows a team of users to complete a complex transac
tion involving numerous objects by passing incomplete
objects back and forth among them in a controlled manner.

- The modern GIS's are characterized by high degree of
function distribution as they are facilitated with versatile
intelligent workstations, such as image processing worksta
tions, graphic analysis workstations and so on, all with
local processors and buffers for temporarily storing copies
of the required database objects. Some of these workstations
may be mostly suitable for performing certain types of
transactions by means of special hardware and software. For
example* an array processor can make an image modification
much more effective than the main system can. This feature
requires the management of the check-out environment to be
distributed yet integrated to the whole system.

- The database objects checked—out are just temporary, swap-
able copies. This feature requires the system to handle
dynamic data distribution, rather than static distribution.

In fact, the data management system in an environment invol
ving multiple check-out copies should be considered as one
in between DDE and multicache system. Thus we introduce a
concept called dynamically distributed Database Window (DBW).

A DBW resides on a workstation, containing objects copied
from the Main Database (MDB), together with the universally
quantified integrity constraints on these objects, which
provides an extended application-oriented programming
environment for the MDB. A user can access both MDB and
DBWs. There are communication paths among MDB and distribu
ted DBU's for data check-in/out/ and update synchronization.

Thus a DBW is handled as, firstly, a check—out environment
holding required copies of database objects; secondly, a
semi-independent system supported by a local data manager/
where data can be manipulated by multiple users, and finally/
a swapable buffer/ not for keeping fixed set of data/ but
for buffering the required data for the current applications.

A DBW is defined by specifying a query to the selected data
base objects. The definition of a DBW causes the query to be
parsed and stored by the DBMS. An OPEN/ADD request can be

428

made at any workstation, but must be sent by the system to
MDB for execution. Managed as a temporary database, a DBW
can be queried and updated, while committed updates made to
the objects are propagated to the MDB and those DBW's who
contain the same objects.

The application program interface includes certain particu
lar language constructs to DEFINE a DBW, to OPEN and CLOSE
a DBW, to ADD or DROP objects to or from a DBW, to EXECUTE
a transaction (upon which the identification and the
timestamp of the transaction are generated), to SUSPEND and
RESUME a transaction, to FORK the transaction into a
hierarchy of sub—transactions for cooperative task, and to
GRANT and REVOKE R and W privileges to specific sub-
transactions to use certain objects.

For example, we use the following statement in our 6IS to
define a DBW named "map" on the workstation "station_a",
who contains data for the features "elevation" and "land_use"
(physically stored in separate files) of an 1:1000,000 scale
digital map "J-47" (in our system "grid" is not a relation,
but a generalized logical database object while each
coverage is treated as a view of "grid") :

DEFINE map ON station_a INCLUDE grid WHERE coverage = "J-47"
AND feature = "elevation" AND feature = "land_use"

(which allows objects grid. dtm. J47 and grid. Inu. J47 be
included in DBW map on station_a). We can also delete from
the above DBW the data for the feature "land_use" of cove
rage J-47 as
DROP grid FROM map WHERE coverage = "J-47" AND

feature = "elevation"

To describe the operational behavior of a multi-DBW system
we refine some concepts for depicting the system, where all
the states mentioned below are stable states, that is, the
states detected when there is no unfinished transactions on
the involved database objects. We use X*" = <X, -CX1, . . . , Xn»
to represent the combination of a datbase object X in MDB
and its copies -CX1, . . . , Xn> in DBW's, use D to denote the
MDB, use D~ to denote the combination of MDB with all DBW's.

[DEFINITION!
. A state of a database object X in MDB is referred to as

a primary state of the object, denoted by s(X), where the
set of all its possible primary states is denoted by S(X).

. A set of primary states of all the objects in MDB,
D = -CX, . . . , Y>, is referred to as a primary state of the
database, and represented by

s(D) = <s(X),. . . ,s(Y)> where X € MDB, . . . , Y € MDB

The set of all database primary states is denoted by S(D).

429

[DEFINITION]
. A state of a database object X in the MDB< together with

all its copies in DBW's, -CX1, . . . , Xn>f is referred to as an
extended state of the object denoted by

s(X'v) = -Cs(X), -Cs(Xl)> . . . , s(Xn»

If X has no any copy outside then sCX^) = {s<X), ji>. The
set of all extended states of the object is denoted by S(X'N'>.

. A set of extended states of all the database objects is
referred to as an extended state of the whole database
denoted by

s<D~> = <*(*•*), . . . , sCY-*)} where X € MDB, . . . , Y € MDB

The set of all possible extended states of the database is
denoted by 3(0^).

[DEFINITION! A set of integrity constraints IC(D) is a set
of universally quantified predicates on the primary state
of database D, denoted as

IC(D) : S(D) — > {True, False}

where certain subset of 1C is defined on a subset of S(D)»
such as

IC(X) : S(X) — > {True, False}
where IC(X> 6 IC(D> and X C D

[DEFINITION! A consistency constraint is a mapping CC on
the extended state of a database, as

CC : S<D'V) — > {True, False}

or on individual objects, such as
CC : S(X"") — > {True, False} where X f D

[DEFINITION!
. A primary state s<X) of an object X, or s(D) of the

database, is said to be integrate iff IC(X):s(X) — >True,
or IC(D) : s<D) — > True, respectively.

. An extended state s(X'v) of an object X is said to be
consistent (that is, CC : sCX^) — > True, or simply

CC<s<X~») iff
s<X*-) = {s(X), *} or
s(X'v) = {s(X>, {s<Xl>, . . . , s(Xk)} and k >= 1

and s(X) = s(Xl) = . . . = s(Xk)

An extended state 5(0^) of a database is said to be
consistent iff

Vx (X € D) — >

A state of an object or a database is said to be valid
iff

IC(X)(s(X» and CC<s(XA'))
or IC(D)(s(D» and CC<s(D'v » respectively

430

that is, both integrate and consistent.

Based on the above definitions, we clarify below the
concept of transaction in a multi— DBW system.

[DEFINITION] A transaction on a database is a mapping from
a stable extended database state to another stable extended
database state, that is

T :

[DEFINITION] An execution of a transaction e(T) is correct
if the stable state s(D'v) it causes is valid by satisfying
XC(0)(s(D» and CC(s<D'v')>.

Based on the above definitions the follows are implied :
- A traditional database altering operation can be consi
dered as an action within a transaction. Such an action may
cause a temporary inconsistent state, but is undesirable to
be followed by an—immediate synchronization effort. For the
logn-duration, complex and frequently modified GIS transac
tions at DBW's, benefits offered by this treatment consist
in high flexibility and low communication cost.

- There is a data coherence problem among MDB and DBW's,
caused by the multiple access paths to a logic database
object simultaneously, which is more complex in a multi-DBW
system than in a static multicopy DDB.

- A DBW OPEN/ADD or CLOSE/DROP operation must be considered
as a transaction. Although it neither changes the primary
state of MDB, nor has confliction with another OPEN/ADD or
CLOSE/DROP operation, it does cause a transition of the
extended state S**, and may have conflict data set with
another transaction.

Thus a transaction involving multiple actions can be
modelled as
[DEFINITION] A transaction T is a 5-tuple <A, PA, 1C, U, PU)
where

. A is a set of actions/

. PA is a partial order on A,
1C is a set of integrity constraints which must be
satisfied by the system states before and after the
transaction execution,

. U is a set of post-actions for enforcing the system
legality, such as update synchronization, recovery, ... etc.

. PU is a set of protocols on U, expressed by a set of
rules and algorithms.

In general a protocol is based on a correctness criterion
of executions, such as two-phase locking, timestamps order
ing, ... etc, which guides the acceptance test and the neces
sary post— execution actions such as update synchronization.

Augmenting all update synchronization approaches to static

431

distribution/ such as global locking* dominant copy synchro
nization* majority consensus synchronization! multiple
protocol synchronizationi ...etti the update synchronization
algorithm we developed stresses dynamic distribution! which
is described in author's another report CChen 86b3.

Summarizing the above, our model augments existing models
by refining the notion of checkout environment and control
ling the update syncronization between the main system and
its buffers based on the concept of dynamic distribution.

CONCLUSIONS

In this paper we have discussed some issues in designing a
spatial DBMS, aiming at getting better compromise of
database principles and GIS requirements.

In studying the impacts of logic on databases/ our another
effort is to develop a rule-based data/task handling appro
ach CChen 86a3. A formal software specification methodology
for information system is explored as well CChen 85a3.

REFERENCES

CChen 86a3 Q.Chen, "A Rule-based Object/task Modelling
Approach"i Proc. of ACM-SIGMOD 86 International Conference!
Washington D. C. 1986, USA.

CChen 86b3 Q. Chen. "The management of Dynamically Distribu
ted Database Windows 11 ! Tech. Rep. 1986.

CChen B5a3 Q. Chen! "Extending the Implementation Scheme of
Functional Programming System FP for Supporting the Formal
Software Development Methodology 11 ! Proc. 8th International
Conference on Software Engineering/ London, 1985.

CChen 85b3 Q.Chen, "Toward A Generalized Data/Action Manage
ment : An Approach for Specifying and Implementing Opera
tional Schemes 11 ! Proc. 1st Pan Pacific Computer Conference!
Melbourne! Australia! Sep. 10-13! 1985.

CCox 843 B. J. Cox, "Message/Object/ An Evolutionary
Change"/ IEEE Trans. On SEi pp. 50-61! Jan. 1984.

CMelk 83a3 M. Melkanoff and Q. Chen! "An Experimental Database
Which Combines Static and Dynamic Capabilities 11 ! Proc. Engi
neering Design Applications! ACM-SIGMOD'83/Database Week.

CMelk 83b3 M. Melkanoff and Q.Chen, "Integrating Action Capa
bilities into Information Databases 11 ! Proc. 2nd Interna
tional Conference on Databases (ICOD-2), Cambridge,UK, 1983.

CRid 833 D. Ridjanovic and J. Brodie, "Action and Transac
tion Skeletons : High level Language Constructs for
database Transactions'1 ! Proc. ACM-SIGPLAN 83, 1983.

432

