
THE PHILOSOPHY AND REQUIREMENTS
OF COMPUTER-AIDED GRAPHIC DESIGN IN CARTOGRAPHY

Rupert Essinger 
Environmental Systems Research Institute

380 New York Street 
Redlands, California, 92373

Rupert Essinger studied at Oxford and Glasgow 
Universities and the State University of New York at 
Buffalo. He currently works in system support at 
ESRI in Southern California.

Abstract: This paper investigates the philosophy of computer- 
aided graphic design in cartography and details the software 
requirements for a CAD workstation for map design. It is argued 
that the most important function of this software is to enable 
the cartographer to experiment fully with the design of symbols 
while they are displayed on a map. Only in this way can map 
symbols be designed in their true visual context and be 
judged graphically against the other symbols that surround them.

GRAPHIC DESIGN

Automating the graphic design process has received 
relatively little attention in computer cartography. Several 
authors have identified the benefits of computer-aided design 
(CAD) tools for the cartographer (Moellering 1977; Bickmore 
1980; Joyner 1982; Monmonier 1982, ch.8; Marble & Calkins 1985, 
draft). However, there has apparently been no attempt to detail 
how computer-aided cartographic design software might function.

Graphic design is an artistic, expressionistic and experimental 
activity. The nature of the creative grapnic design process is 
that the designer is, in effect, the first consumer of the design 
product. The designer predicts the visual needs of the map's 
audience and continually improves the graphic design in response 
to his own perception of it. In this way the graphic designer 
carries out intuitively the perceptual tasks of the future 
audience. Compared with the map's final audience, the 
cartographer probably has sophisticated map reading abilities, 
but the skill of the map designer is precisely that of being able 
to control the interplay of line, color, pattern and detail to 
solve problems of perception and visibility, and so create 
graphics that will facilitate communication at all levels.

THE NEED FOR COMPUTER-AIDED CARTOGRAPHIC DESIGN

The underlying philosophy of CAD is that by liberating 
designers from distracting and tedious tasks, such as hand

189



drafting, they can devote more time to the truly imaginative 
processes of creativity. This should lead to better design and 
greater efficiency (Negroponte 1975).

In traditional cartography the graphic designer's ability to 
experiment with design, to devise and review different approaches 
to the line, color and pattern, is limited both by the available 
technology and the typical production environment. Lawrence Fahey 
(1972) says "the practice of map design demands that the designer 
always keeps traditional map conventions in raind," while trying 
"to produce better maps by developing and refining new ideas" 
(p.132). He continues, "experimentation on different designs is 
also helpful, but unfortunately most cartographers find little 
time to spend on such pursuits" (p.135).

Real graphic experimentation involving all the symbols on a map 
would usually necessitate impossible amounts of redrafting. Of 
course there is no limit to the amount of prior pencil sketching 
and rough working out that can take place before the scribing 
begins. However these rough drafts cannot replicate the fine 
detail and exact color of the map symbols that will be used in 
the final product, and are probably most useful for planning 
sheet layout. It is usually only when we can review the actual 
proof of our map that we can assess the success of our design 
decisions, especially where finely detailed symbols are involved, 
but there are limits to the design changes that can be made at 
the color proof stage. Indeed, in many cartographic 
environments the proof is meant mainly for error-checking, with 
time and resources militating against elaborate reworking. In 
order to experiment fully with symbol size, pattern and color for 
any map, we would have to produce an inordinate number of proofs.

Instead, the cartographer tends to rely on in-house graphic 
styles, design experience with similar maps, and visualization 
from the paper compilation. Visualization, like experimentation, 
is an inherent part of the design activity, but it does present 
problems in map-making, which depends on the establishment of 
visual hierarchies among a mass of medium and fine detail. 
Because they have enormous variation and complexity, these fine 
patterns tend to be hard to visualize.

Moellering (1977) says that compared to the manual map production 
cycle, interactive computer graphic methods provide a much 
richer creative environment, because the results of design 
decisions can be displayed rapidly on a CRT. Experimentation in 
design will be encouraged by the ability to view the impact of 
changes in color and pattern on the whole map graphic. In this 
way individual map symbols can be designed in their true visual 
context and judged graphically against the other symbols that 
surround them. Such CAD software would provide cartographic 
designers with an unprecendentedly powerful set of creative 
tools.

THE REQUIREMENTS OF COMPUTER-ASSISTED DESIGN IN CARTOGRAPHY

Two assumptions have been made about the geographic database

190



used In the proposed CAD software. Firstly, it is assumed that 
geographic data are stored and retrieved separately from their 
symbolic representations as graphics. Compilation involves 
pulling geometric spatial data out of existing databases, data 
that as yet has no map symbolization. Secondly, geographic 
features in the database can be divided into a number of sets 
according to their descriptive attributes. Features within one 
set can be displayed on the map with the same symbology. The 
basic design function is, then, the assignment of symbols to 
sets of features through a process of interactive choice and 
review. All the final design choices made during the session can 
be stored in a design specification file. This file can be used 
to create a series of maps by linking it to different parts of 
the database, and so can be seen as a filter through which 
geometric data is sent for graphic display. Symbol designs are 
not stored with in the database itself because the cartographer 
wants to be free to assign different symbols to features as 
different map designs demand, and to be able to experiment with a 
variety of symbols during the interactive session.

It is likely that some of the interactive design work will be 
carried out on a map displayed at a scale larger than that of the 
intended output product. This is because the resolution of the 
color CRT may make it difficult to see the results of fine design 
work at the same scale as that of the intended final 
reproduction, especially when the map features many convoluted 
lines. Similarly, many maps created at this workstation will have 
to be designed in patches because it may not be possible to 
display the whole map on the relatively small CRT screen at a 
scale that is useful to the designer. As the design process 
entails assigning symbols to sets of features, it is possible 
that we could design an entire map just by viewing the results of 
our choices on one patch from that map. The map design could then 
be reviewed by displaying it patch by patch on the screen so that 
the effect of symbol selection can be seen on areas of the map 
that were not viewed while the choices were being made. 
Furthermore, intelligence could be engineered into the system so 
that the computer alerts the designer to patches on the map where 
features are unusually bunched together and present special 
problems to the designer.

Table 1 shows the required interactive graphic functions for 
designing map symbols. The first function in Table 1 enables 
the cartographer to devise basic patterns for symbols and enter 
these directly into the system by drawing either on a tablet or 
on a reserved part of the screen. These customized symbols will 
complement any basic start-up palette of symbols available to the 
user whenever a session is begun. Once the customized patterns 
have been entered, it should be possible to permanently save them 
so they become part of the start-up symbol palette.

Any symbol selected from the start-up palettes or defined by the 
user can be given further design changes by using the graphic 
manipulation functions in Table 1. For example, if we need to 
create an area symbol that consists of a black dotted boundary 
line enclosing an area filled with yellow and green stripes we 
might first enter the dotted line pattern by drawing a small

191



Table 1 Functions for designing cartographic symbols

FUNCTION

Design and store 
in symbol
library :

Select line color 
of:

Select fill color 
of:

Enlarge or 
reduce:

Thicken or thin 
line work in:

Symbol location 
manipulations

Terrain 
treatments

Thematic 
treatments, eg, 
devise class 
intervals for.

POINTS

Point symbol

6
Point symbol 
outline ,"\

Area inside point 
symbol i

Point symbol

+ +

Point symbol

+ +
Rotate and shift 
point symbol 
xK %

Spot heights

Proportional 
symbols

LINES

Line pattern

Line pattern
ammaamamtmaaaaaa

Area between 
double line

Line pattern 

i —— ii —— ii —— i

Line pattern

Simplify and 
shift lineA/VU>K
fN/lA-^J^

Contouring

Proportional 
symbols

AREA FILLS

Area fill 
pattern

Area fill 
pattern ...

Area inside 
existing fill 
pattern

Area fill 
pattern

Area fill 
pattern

'//// /yXxV

Rotate area 
fill pattern

Hillshading an 
hypsometric 
layering

Choropleth 
bands

192



portion of it in a special place on the screen. When we then use 
the line thickening function, the lines representing the 
boundaries of the areas that are to receive this symbol will 
slowly grow wider on the screen until we signal happiness with 
their weight. They will also appear in the color we have 
selected. The yellow stripes can be defined by devising an area 
fill pattern of yellow parallel lines. Their spacing is defined 
by the enlarging function, their line weight is chosen by the 
thickening function we have already seen and the pattern can be 
rotated too. The area is filled with green color. This will be 
overwritten by the yellow stripe pattern thus producing alternate 
green stripes too. Symbol design is thus seen as a process of 
continual refinement as we develop symbols and review their 
visual performance on the map display.

FEATURE-BASED DRAWING

We have seen that computer-aided cartographic design 
software should let the cartographer experiment fully with the 
design of symbols while they are displayed on a map on the 
screen. The most basic function, then, of this software, is to 
enable the map designer to draw map features on the screen 
display with certain symbols and then redraw any of them any 
number of times with different symbols. In this way parts of the 
map image can be redesigned if any of the choices of symbols 
prove graphically unsatisfactory when reviewed on the screen. The 
cartographer should be able to select any one of the various 
features on the map display and redraw that feature with a 
different symbol design at any time during the session.

This level of freedom is essential if the designer is to have 
full interactive control over the detailed visual hierarchies 
characteristic of cartographic products. For example, one of the 
first features we draw on the map display may be a city, which 
will be drawn using a particular area-fill symbol. We may then 
proceed to draw various line features on the map, like rivers and 
roads, that go through this city, only to find that the initial 
choice of area-fill symbol for the city provides a poor visual 
background for the line features. Assuming that we do not wish to 
change the design of the line symbols, we must be able to redraw 
the city with a new area-fill symbol to improve the figure-ground 
relationship. Furthermore, when we redraw the city symbol, the 
system should preserve the existing line symbols on the screen. 
Redrawing a background feature should not cause existing 
foreground features to be overwritten and thereby erased.

In this way the cartographer can experiment with a number of 
different area-fill symbol designs for the city without 
disturbing the line symbols that have already been designed and 
drawn on the map. All that will happen on the screen is that the 
urban area symbol will be altered where it is not masked out by 
the roads and rivers. We can call this system of drawing a 
feature-based system, because the cartographer manipulates the 
image by assigning symbols to features and because the display is 
updated in a way which preserves the existing features on the 
map.

193



Note that when this system redraws a symbol X on the screen it 
not only preserves any symbols that have been placed over that 
symbol X, it also preserves any symbols that symbol X itself 
overwrote. For example, we might have used a wide line symbol to 
show roads going through the city but now decide to redraw these 
roads with a narrower symbol. In this case once the roads have 
been redrawn on the map with the new, narrow line symbol, the 
system should automatically redisplay the city area-fill symbol 
in those places along the edge of the now narrower road where the 
city area-fill symbol had previously been overwritten by the wide 
road symbol. Similarly, the user must be provided with an erase 
function so that any feature can be completely removed from the 
map display. Erasing a feature X from the map should not erase 
features that have been already been drawn over feature X, nor 
should it erase any parts of features which were themselves 
hidden when feature X was drawn. Erasing feature X will 
automatically make any parts of features overwritten by X visible 
again on the map.

In the feature-based drawing system, when we draw a feature on 
the map for the first time it would overwrite (but not 
irretrievably erase) any existing features that coincide with in 
any locations on the map. This graphic protocol seems to makes 
good design sense because it encourages the cartographer to 
design the area symbols that form the background before designing 
the fine planimetry and text found in the foreground. There will 
then be an existing map background with color and pattern against 
which the symbols for the foreground planimetry and text can be 
designed, instead of having to do this delicate design work 
earlier in the session when those foreground symbols would hang 
against a void with no way of gauging their eventual needs of 
contrast and visibility. And of course, at any stage we can 
change any of the existing symbol designs, whether foreground or 
background.

Feature-based drawing poses some implementation problems. In most 
computer graphics systems drawing something on the screen 
overwrites (and therefore erases) anything that is already 
displayed in the same position on the screen. This situation 
arises because the simplest way of driving a raster display 
terminal is to keep the screen frame buffer updated with just one 
set (the latest set) of pixel values. For our purposes this 
situation is not satisfactory because, in the example already 
given, redrawing the urban areas with the new symbol design in 
order to provide a better background for the line features would 
automatically overwrite the existing line features, and we would 
need to draw them all again. Even when drawing a feature on the 
map for the first time, in which case the symbol overwrites any 
parts of existing symbols that coincide it, this overwriting 
should not be permanent. It must be possible for us to erase that 
new feature, which will then cause those parts of existing 
symbols that it overwrote to be redisplayed.

We can represent the requirements of this system conceptually as 
a series of layers, somewhat similar to a set of transparent 
mylar overlays as might be found in manual cartography. Each

194



layer represents a discrete set of features on the map. When a 
new feature is drawn on the map display on the screen, that layer 
becomes the top-most in the series, it is unobscured on the 
screen yet it obscures all the layers beneath wherever they share 
map locations with it. When one of the layers is redrawn with a 
new symbol the layers above and beneath that layer are 
preserved. In fact, the key to implementing the feature-based 
drawing system of drawing is to replicate this layer structure 
with bit-planes in the screen frame buffer (that part of 
addressable memory used for driving the display). Each set of 
features drawn on the screen with the same symbol can be 
represented on a separate bit plane. Each bit-plane stores the 
pixel locations needed to display the set of features by giving 
those locations the bit-value 1. Whenever a feature is added to 
the map, a new bit-plane is set-up and stored, as it were, on top 
of the existing series of bit-planes. Whenever a feature is 
erased or redrawn, the bit-plane for the feature is accessed and 
the bit values are changed to represent the new screen locations 
needed for the feature (if the feature is erased, all the 
locations in the bit-plane are given the value 0). Updating the 
display is then a matter of reading the layers of bit-planes. For 
any pixel location on the screen, the upper-most (most recent) 
bit-value of 1 in the bit-plane series, indicates that that pixel 
must be used to display the feature represented by that bit's 
bit-plane. The color of that pixel can then be determined by 
referencing a separate color look-up table that matches features 
to symbol colors.

The precise nature of the visual hierarchy on a map is determined 
by the geographic data being mapped. For example we might have 
roads overwriting rivers wherever they cross because most roads 
do go over rivers, whereas the interrelationship between roads 
and railway lines is rather less predictable. Handling roads and 
railway lines within our feature-based drawing system, which 
draws by overwriting unless the feature has already been drawn, 
may be difficult. Where the road crosses over the railway, the 
railway symbol will have to be overwritten, and where the railway 
crosses over the road the road symbol will have to be 
overwritten, and in whichever order these sets of lines are drawn 
on the map, these crossing interrelationships will not be 
accurately portrayed. The solution to this will depend on the 
level of detail in the geographic database. In many databases 
crossing points between lines in two networks will be entities 
themselves and will be represented in the data. We could then, 
for example, divide our road and railway features into two sets; 
those that are crossed over and those that cross over, and then 
access and draw the former set before the latter set.

Feature-based drawing enables the designer to experiment with the 
symbols for one set of features without disturbing the other 
symbols on the map. Handling drawing in feature-based layers as 
described here enables us to experiment fully and interactively 
with the design of symbols at all levels in the visual hierarchy 
to an extent that is not possible with manual cartographic 
techniques.

195



REFERENCES

Bickmore, D.P. 1980. Future research and development in computer 
assisted cartography. In The Computer in Contemporary 
Cartography, ed. D.R.F. Taylor, pp. 235-249. John Wiley and Sons.

Calkins, H.W., and Marble, D.F. 1985. Draft. The structure of an 
an automated cartographic system. Geographic Information Systems 
Laboratory, SUNY at Buffalo.

Fahey, L. 1972. An approach to map design. Proceedings, ACSM 32nd 
Annual Meeting, pp. 132-141.

Joyner, S.L. 1982. Automating color map design: a designer's 
viewpoint. Unpublished Masters Thesis, Department of Geography, 
SUNY at Buffalo.

Moellering, H. 1977. Interactive cartographic design. 
Proceedings. ACSM 37th Annual Meeting, pp. 516-530.

Monmonier, M.S. 1982. Computer-assisted cartography: principles 
and prospects. Prentice-Hall.

Negroponte, N. ed. 1975. Reflections on computer aids to design 
and architecture. Petrocelli-Charter, N.Y.

Robinson, A.H. 1975. Map design. Proceedings, Second 
International Symposium on Computer-assisted Cartography, pp. 9- 
14.

The views expressed here are the author's and do not 
necessarily reflect those of his company

196




