
AEGIS - A PRACTICAL EXERCISE IN DATA MANAGEMENT 

David Harris and Karen Pettigrew

CACI MARKET ANALYSIS 
59-62 High Holborn

London 
WCIV 6DX

CACI Market Analysis has for a number of years been faced with 
spatial data management problems for which no commercially 
available system has been found to provide a satisfactory 
solution. The company has now designed and partly implemented 
support for a powerful and flexible data model to satisfy the 
following criteria:

1) Ability to perform editing, digitising, analysis,
manipulation and mapping functions directly upon a single 
data structure. A prime requirement was to eliminate any 
need for continual data conversion between different storage 
formats.

2) Compatibility with existing CACI software.

3) Subroutine library support for basic operations.

4) Sufficient flexibility to cope with any cartographic
information we could envisage handling in the medium term 
future.

This paper describes the software implementation aspects of the 
model, its applications, and an outline of envisaged future 
developments.

520



Introduction

CACI Market Analysis was the first commercial organisation to 
become an agency for resupply of census statistics in 1977, and 
has been a pioneer in the use of spatially referenced data for 
market analysis and planning. Since that time the volume and 
range of applications have undergone a process of continual and 
rapid expansion. The company now provides consultancy, analysis 
and data services to clients in both the private and public 
sectors.

Mapping as a means of presentation of data and results has always 
been a requirement. During the last few years, however, the need 
for sophisticated mapping and CIS capabilities in our application 
areas has grown steadily. After a review of the available 
software in this area CACI has decided that the most effective 
course of action is to independently develop new software. This 
paper describes the approach adopted to the management of 
structured vector cartographic data.

It should be stated at the outset that our requirement is for 
usable software rather than ideas or academic theories. The 
primary concern is to put ideas to work rather than to unearth 
their origins.

Our review of commercially available software began towards the 
end of 1984. CACI uses a range of software for CIS-related 
purposes, in particular a digitising package has already been 
developed in-house. GIMMS has been used for some mapping 
purposes, and a friendly CACI mapping package is used for maps 
not requiring the flexibility of GIMMS. This package has 
undergone gradual enhancement, and is expected soon to be used 
for all mapping purposes within CACI Market Analysis.

The criteria used in our search for CIS capabilities are 
described in the abstract. Of these, the requirement for a 
single vector data structure was considered paramount - the 
requirement to convert boundaries to and from GIMMS format has 
caused many problems, and these problems will inevitably multiply 
as spatial data becomes more abundant and more complex. Criteria 
(2) and (3) are to some extent equivalent, in the sense that any 
package satisfying criterion 3, is likely to be compatible with 
our existing range of data management and analysis software. Not 
to require criterion (4) would be short-sighted.

Design of a suitable data model and subroutine library was 
started in summer 1985 with the help of Phillip Wade of Hull 
University (funding from a SERC-CASE studentship), and was 
completed by the authors and Duncan Campbell of CACI towards the 
end of 1985. At the time of writing implementation is in

521



progress and is expected to be complete before this paper is 
presented.

The Software Philosophy

Much interest in this field at present revolves around the 
implementation of cartographic data management within a 
relational (or other) database management system. We have taken 
a different approach in this exercise. The objectives have been 
to develop a data model, to identify the necessary fundamental 
operations on the data model, and to develop a subroutine 
library (named AEGIS) to support these operations. The result is 
a software tool which provides low-level cartographic data 
handling support for any application program, particulary for 
digitising (and editing), mapping and analysis applications.

This approach was chosen primarily because it provides support 
for all operations which will be required on the data, whereas a 
DBMS implementation is unlikely to do so in an effective manner.

We see further advantages as follows. There are great benefits 
in speed of operation since file structures and access modes are 
designed specifically, and since much redundant housekeeping 
which a DBMS would perform, is discarded. In addition the 
application programmer's job is made much easier by having access 
to subroutines which do just the operations required, rather than 
a much more general set of access subroutines which are typically 
supplied with a DBMS package.

We do lose out by not having immediately accessable all the 
facilities a DBMS provides. To some extent we can offset this 
loss since we have code-level access to CATALIST, a CACI data 
management and report generation package, which we will be able 
to incorporate as an application package using the AEGIS 
subroutine library. Some facilities - such as simultaneous write 
access to a coverage by more than one user - we will just have to 
do without.

The Data Model

Basic Entities 

There are four basic entity types

1) Points
2) Line Segments
3) Primitive Region
4) Compound Objects

522



In geometrical terms, Line Segments start and end at 
may have any number (zero or larger) of intermediate 
co-ordinates. Note that the intermediate co-ordinates are not 
point entities. The term 'point 1 will henceforth always mean a 
point entity, and is distinct from an "intermediate co-ordinate'. 
Primitive Regions are contiguous uncut, bounded regions. Unlike 
the other entity types, primitive regions cannot be added or 
deleted by editing operations. They are created only by a 
polygon build process. Compound objects are, in general, lists 
of entities of any of the four types.

This framework, although developed independently of the Ordnance 
Survey small scale proposals, is similar to the structure 
described by Haywood (1986) .

Attributes.

The treatment of attributes is of central importance.

Any entity may, and usually will, have a list of attributes 
attached to it. All attributes have the same structure - there 
is a numeric attribute type, which in the present implementation 
must be in the range 0 to 16383, followed by further information, 
which may be of any length and of any format.

Attributes are used for two purposes.

1) To record information about the object it belongs to - for 
example that a point represents a railway station, that the 
railway station is called St Margaret's, or that a line 
segment represents a section of railway line.

2) To record geometrical and other relationships between objects 
for example that St Margaret's railway station is one of the 
end points of the above mentioned line segment. Typically 
such attributes will identify other entities by their 
internal reference number.

It is important to note that the attribute list is the only means 
of holding information about an entity, other than the basic 
information which is held for all entities of a particular type.

In implementation terms, all attribute types exactly divisible by 
ten (ie numbers ...0) are reserved by the system and have 
specific preallocated meanings. Some of these may not be 
manually added or deleted by the user. For example point 
attribute type 0 is used to record the fact that the point is a 
node of a line segment - it is added or removed only by the 
ADD_SEGMENT and DELETE_SEGMENT subroutines.

All other attribute types are user definable, and may be used for 
whatever purposes, and have whatever meanings, the user wants.

523



Housekeeping and General Support

In addition to the basic operations described in the following 
sections, a number of general housekeeping functions are 
undertaken automatically. In summary the AEGIS subroutine 
library provides the following support:

a) Database consistency is ensured, except in the case of a 
machine crash (in which case all data is recoverable).

b) Two separate point features cannot have the same location.

c) There is unlimited feature-sharing using attribute lists.

d) There are automatic checks for knots as segments are added.

e) Null segments cannot be added (if a segment has start and end 
node the same, it must have at least two intermediate 
co-ordinates).

f) Update histories are automatically recorded.

g) Application programs are independent of physical file 
structure.

h) Douglas-Peucker line generalisation is supported.

i) A comprehensive set of basic operations on spatial data is 
easily accessable to the application programmer.

Points, and Operations Upon Them

The basic information held for each point is as follows:

Unique internal reference number
Location specified by two floating point numbers
The degree of the point (ie. the number of segments for which
it is a node).

The basic operations supported are ADD, FIND (ie. locational 
search), READ, READ_SEQUENTIAL, ADD_ATTRIBUTE, READ_ATTRIBUTE, 
DELETE_ATTRIBUTE.

Within these operations there is automatic support for one 
particularly important consistency check - namely that it is 
impossible for the user to cause two point entities with the same 
location as each other to be entered into the coverage.

524



There is no operation to delete a point. This is because a point 
is considered meaningless unless it has at least one attribute. 
A point without attributes is termed a 'ghost point' and is 
effectively deleted: read operations will not read such a point, 
but it can be activated by addition of an attribute immediately 
after its creation, or less commonly at a later time if its 
reference number is known. This approach avoids the problem of 
coping with delete-protection for points which are nodes.

Line Segments, and Operations Upon Them

The basic information held for a line segment is as follows:

Unique internal reference number
Start and end nodes (which are references to point entities)
Length
Area (cf Wade (1986))
Envelope
Date and Time created
Date and Time deleted (if it has been deleted)
XY location and a generalisation code, for every intermediate
co-ordinate.

The basic operations supported are ADD, READ, READ_SEQUENTIAL, 
DELETE, ADD_ATTRIBUTE, READ_ATTRIBUTE, DELETE_ATTRIBUTE, JOIN, 
SPLIT.

The ADD operation automatically adds type 0 attributes to the 
point entities which are the start and end nodes. These provide 
pointers from the nodes to the segment. DELETE_SEGMENT will 
remove these attributes.

Unlike points, line segments may be deleted. This is because a 
line segment without attributes is more meaningful than a point 
without attributes. One may wish to create a coverage containing 
only local authority boundaries, for instance, without bothering 
to add any attributes because the meaning of all line segments in 
this coverage is already known. To do the same with a point 
coverage is less satisfactory since there may have to be other 
points (such a digitiser reference points) in the same coverage. 
In addition, the problem with delete-protection does not arise, 
because primitive regions are invalidated whenever any segment is 
added or removed from a coverage.

The DELETE operation does not remove the basic information for a 
segment. The segment is marked as deleted, and the date and 
time of deletion recorded. This allows the segment/node 
structure of a database as it was at any specified past time to 
be recovered, provided no subsequent garbage collection has taken 
place.

525



The ADD_SEGMENT operation automatically adds generalisation 
codes, calculated using the Douglas-Peucker algorithm, to all 
intermediate co-ordinates, and READ operation can filter 
intermediate co-ordinates using these codes. The user can, 
alternatively supply generalisation codes, or even use this 
facility to store height information for each intermediate 
co-ordinate.

Primitive Regions, and Operations Upon Them

These are a little more complicated. The reader is referred to 
Visvalingam (1986) and Wade (1986) for background and 
definitions.

The basic objects held are actually boundaries, but attributes 
are used to form a structure in which primitive regions are 
(almost) as easily accessable.

For each boundary, the following basic information is held:

Unique internal reference number
Type (either enclosing boundary, or hole, or null boundary)
Area
Perimeter length
Envelope
Inside (described further below)

The basic operation are BUILD, READ, READ_SEQUENTIAL, 
READ_ATTRIBUTE, READ_POLYGON_SEGMENTS

The BUILD operation is in two stages. The first stage builds 
boundaries, and identifies each boundary as either an enclosing 
boundary, or a hole. Each boundary comprises a list of segments, 
and these are held as attributes. Each such attribute contains 
the internal reference number of a line segment. This stage also 
adds an attribute to each line segment, containing the back 
pointers - ie. the internal reference numbers of the boundaries 
on the left and right of the segment.

The second stage forms primitive regions by allocating each hole 
to an enclosing boundary. The reference number of the enclosing 
boundary is entered into the INSIDE field of the hole, and an 
attribute containing the reference number of the hole is added to 
the enclosing boundary. To make everything tidy, there is a 
"global enclosing boundary' with reference number zero, which has 
no segments, but has attached to it all the outermost holes of 
the structure.

526



Once this has been done, it is possible to access primitive 
regions by ignoring records corresponding to holes, and 
remembering when accessing segments for an enclosing boundary to 
also access segments for holes inside that boundary.

The third stage of Wade's boundary building algorithm has not yet 
been implemented because of lack of a good reason for doing so, 
but the data structure allows for it - each enclosing boundary 
(except the global enclosing boundary) would be marked INSIDE a 
hole, and each such allocation would cause an attribute to be 
added to the hole, giving the reference number of the enclosing 
boundary.

Compound Objects, and Operations Upon Them

Compound objects are lists of entities held as attribute lists. 
To a great extent, therefore, a compound object is nothing more 
than its attribute list. There is a little basic information 
held, however:

Internal reference number
Keys - four integers each in the range -32768 to 32767
Name
Envelope

The basic operations supported are ADD, READ, READ_SEQUENTIAL, 
READ_KEYED, DELETE, ADD_ATTRIBUTE, READ_ATTRIBUTE, 
DELETE_ATTRIBUTE, ADD_ENTITY_TO_COMPOUND_OBJECT, 
REMOVE_ENTITY_FROM_COMPOUND_OBJECT.

The ADD_ENTITY_TO_COMPOUND_OBJECT operation adds an entity of any 
type to the components of a specified compound object. It is 
just a double ADD_ATTRIBUTE function - one attribute added to the 
component list of the specified compound object indicating which 
object has been added, and one to the added entity indicating 
which compound object it is now a component of.

The most frequently used means of attaching a primitive region to 
a compound object is via an area seed. The general method is 
that area seeds are components of compound objects, and an area 
allocation procedure finds, for each seed, which primitive region 
it lies within. The primitive region is then attached to the 
compound object.

The reason for the keys is to provide a permanent unique 
identifier for each compound object which may be specified by the 
user, for instance, to specify a county, district, ward or 
enumeration district using standard OPCS area keys. This method 
can be used to represent hierarchical relationships between 
compound objects.

527



If permanent area objects, say counties, are to be stored they 
will be stored as compound objects. For example, the 'Islands 
Region 1 of Scotland would be a compound object (keys 65,0,0,0 if 
following OPCS codes) which would have many primitive regions 
attached to it.

We currently have an interactive digitising package 
acting directly upon these data structures via the AEGIS 
subroutines, together with a rather basic mapping capability. It 
is expected that all spatial data used by CACI Market Analysis 
will be held in this form, and accessed only via the AEGIS 
library, before the end of 1986.

We intend that a far more powerful mapping capability will be 
developed shortly, together with data dictionary and query 
language facilities.

No final decision has yet been made on whether the software will 
be made commercially available. The authors would be interested 
in hearing from any parties who feel that they could either 
contribute to the ongoing development programme, or benefit from 
it.

References

[1] Haywood, P.E. (1986). Proposal 1:50000 digital data 
specification. Ordnance Survey

[2] Visvalingam, M., Wade, P., Kirby, G.H. (1986). Extraction of 
area topology from line geometry. Proc. Auto-Carto London.

[3] Wade, P., Visvalingam, M., Kirby, G.H. (1986). From line 
geometry to area topology. CISRG discussion paper, 
University of Hull.

528




