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ABSTRACT

Various spatial filtering techniques have been developed to process 
digital Landsat data. This research aimed to filter the same digital 
data within the frequency domain, and involved the use of the 
Butterworth lowpass and highpass filters. The lowpass filter is used 
primarily for the reduction of noise whereas the highpass filter is used 
primarily for edge enhancement. The analysis of these two filters was 
based on a comparative approach, utilizing what had already been 
accomplished in the spatial domain. It was found that the Butterworth 
lowpass filter did an inferior job of reducing noise and keeping data 
distortions to a minimum than did the spatial filters. Also, the spatial 
filters clearly defined edges to greater detail than the highpass 
Butterworth filter. However these results only apply to the frequency 
filters used in this research. It cannot be inferred that all frequency 
techniques would be inferior to spatial filters.

INTRODUCTION

In the realm of general digital image processing, two-dimensional 
Fourier transforms are used for enhancement, compression, texture 
classification, smear removal, quality assessment, cross-correlation, 
and a host of other operations. In particular, the Fourier transform 
of an input image can be used to ascertain the spatial frequency 
content of that image. Other spatial filtering to modify an image or to 
analyze a spat ; al structure can often be performed conveniently in the 
frequency domain. The goal of restoration is to process a degraded 
image so that, in accordance with some criterion, it resembles as 
closely as possible some ideal image. Alternatively, the aim might be 
to enhance the details of the image to enable the maximum amount of 
information to be extracted from the image.

An example of this involves research into the extraction of surveying 
information, currently being undertaken in the Division of Surveying 
Engineering at The University of Calgary. A large amount of survey 
ing and mapping information involves linear features, roads, railroads, 
cut lines, field boundaries, etc. In extracting these features from 
Landsat data, for example, the additional spatial component, represent 
ed by the linear element, can be used to assist in the delineation and 
interpretation process.
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The work involves an analysis of a study area in the upper Kananaskis 
Valley of southwestern Alberta, located in part of the Rocky Mountains 
comprising a segment of the Calgary, Canada Landsat scene (see 
Figure 1). The test data set consisted of 600 by 600 pixels, from 
which a 256 by 256 pixel subset was taken. All the necessary 
corrections had already been applied to the original data to account for 
such things as haze correction, radiometric errors and sixth line band 
ing. Then, the data were rectified to ground control using a second 
order polynomial, and nearest-neighbour resampling was carried out, 
based on a 50 by 50 m U.T.M. coordinate grid. As well, principal 
component analysis (PCA) had been performed, resulting in the first 
and second principal components containing 99 percent of the total 
original four band variance (Paine, 1984). These principal components 
were combined to produce a classified data set on which comparisons 
between the spatial and frequency domain filters were performed 
(Paine, 1983).

FREQUENCY FILTERING

The main difference between frequency filtering and spatial filtering is 
that the former is usually done in the global context, applied to the 
image or data set as a whole, whereas the latter is usually applied 
locally, to a sub-set of the data. Examples of spatial filters are the 
Means, Median, Mode, and Five-Nearest-Neighbours filters which act 
on the local 3x3 box of data, and the Minimum-Variance and Gradient 
filters, which act on a rotating 2x2 box of data (see Paine, 1986).

Frequency filtering involves spectral analysis using Fourier 
transforms. The Butterworth high and low pass frequency filters used 
in this research are global, linear filters. A linear filter is one which 
assumes no periodicity in the signal, and therefore can be more 
generally applied. There are several alternate linear filters that can 
be used within the frequency domain. Examples are:

1) Recursive Frequency-Domain filters,
2) Interpolating filters,
3) Wiener filters, and
4) Exponential filters.

Another approach to filtering is to use non-linear filters. Two of the 
more common non-linear filters are the Maximum-Entropy method (MEM) 
or the Maximum-Likelihood method (MLM). The MEM and MLM differ 
from conventional linear spectral analysis filters because they avoid the 
assumptions that the data set is periodic and that the data outside the 
record length are zero (Haykin et al, 1979). The MEM or the MLM 
show considerable promise for estimating the spectra, especially when 
the length of the data set is limited. However it should be noted that 
the computational effort involved with the non-linear filters is 
extensive and therefore they are not as widely used as the linear 
filters.

An alternative method of filtering noise or smoothing a data set is by 
looking at the phase relationships between the Fourier coefficients at 
particular frequencies. The basis behind this method is to determine 
the coherency measure, which is the quantitative measure of the phase
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agreement among the phases of various Fourier coefficients at a given 
frequency (Dave and Gazdag, 1984). The coherency measure assumes 
a value of unity if all of the Fourier coefficients of a given frequency 
are in phase, and a value of zero if their phases are randomly orient 
ed (Dave and Cazdag, 1984). Thus it can be shown that the 
coherency measure attains a higher value for those frequencies that 
are less contaminated, and as a result the coherency measure is cor 
related more strongly with the signal component than with the noise 
component. The result, then, of multiplying the coherency measure 
with all of the Fourier coefficients will be an increased signal-noise 
ratio and thus a smoothing of the noise from the data set.

FILTERING TECHNIQUE

The first step when working with Butterworth filters in the frequency 
domain is to remove any trends that may occur in the data set. Trend 
removal is necessary in the Fourier analysis process and may be 
accomplished by fitting a surface through the data set and calculating 
the deviations from that surface (Davis, 1973). With this data set it 
was found sufficient to use a first order surface for this purpose.

The next step is to take into account the fact that the data set is 
defined by a finite interval. The Fourier transform is derived for a 
continuous function defined from minus infinity to plus infinity, or an 
infinite sampling interval. If the sample does not have an infinite 
sample interval, it will not satisfy the conditions necessary to recover 
completely an under-sampled function. This is known as aliasing. In 
order to get around this problem of aliasing, the finite sampling area 
can be represented by a function known as a window. A window and 
its Fourier transform are shown graphically in Figure 2. The window 
used in this research was the Hamming window. The circular pattern 
of the final data sets is due to the windowing process, because all 
outer corners of the 256 by 256 data set are damped down to zero (see 
Figure 3) .

After windowing is completed, the next step is to decompose the data 
via a Fast Fourier Transform algorithm. The FFT is used because the 
data are sampled on a regular grid, allowing significant savings in 
computational time. Then, once the data set has been decomposed to 
the frequency domain, different filters can be applied to the data to 
try to remove random signals that can be attributed to noise. As 
well, filtering can be used to enhance the image.

The transfer function of the Butterworth filter of order N and cut-off 
frequency located at a distance D from the origin is defined by 
(Gonzalez and Wintz, 1977): °

H(u,v) = 1/(1 + 0.414 * (D(u,v) / D )**2*N (1)

where H(u,v) .... transfer function,
D(u,v) .... distance from the point (u,v) to the origin

of the frequency plane, 
N ......... order of Butterworth filter used,
D ........ distance to cut-off frequency.
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The cut-off frequency defines the radii which encloses various 
percentages of the information that will be filtered. For low pass 
filtering, the frequencies inside the radius are referenced, for high 
pass filtering the reverse is true. The process of trying to decide 
what the cut-off radius should be is a difficult one, and is most easily 
done on a trial and error basis. The effect of the different cut-off 
frequencies is compared and the one that produces the best result, 
without losing or altering the data significantly, is chosen as the 
cut-off frequency to be used.

It should also be noted that since H(u) has frequency components that 
extend to infinity, the convolution of these functions introduces 
distortions in the frequency-domain representation of a function that 
has been sampled and limited to a finite region (Conzales and Wintz, 
1977). This implies that, in general, it is impossible to completely 
recover a function that has been sampled in a finite region.

Finally, when the filtering process has been completed it is necessary 
to bring the data back to the spatial domain. This involves running 
the frequency data through several reversal algorithms, which include 
inverse FFT, inverse windowing and inverse trend. The filters can 
then be evaluated.

RESULTS OF FILTERING

In order to evaluate the filtered data sets, an unfiltered data set was 
used. Comparison was on the basis of:
1) Degree of generalization, which means that the image is smoothed 

so that areas become more homogeneous.
2) Degree of enhancement, where composite areas are created by

merging discrete segments that are in close proximity. As well, 
linear features, such as edges and boundaries, are modified to 
become more distinct within the image.

3) Information distortion, which implies the movement of linear
features or boundaries, the addition of erroneous information, or 
any significant loss of information.

The unfiltered classified data set shows both lack of generalization and 
boundary definition (see Figure 4). However this data set is 
considered distortion-free. Noise in the data can be regarded as 
masking the image, so the filtering process aims to produce a sharper 
image.

Lowpass Butterworth filters at 99, 95 and 90 percent energy level are 
displayed in Figures 5, 6 and 7, respectively. The 99 percent filter 
shows little generalization or enhancement compared to the unfiltered 
data set. Also there is little distortion of information. On the other 
hand, the 90 percent filter shows much generalization and smoothing, 
to the extent that some information is lost and erroneous information 
added. The lowpass Butterworth filter at 95 percent gives optimum 
results. This filter does a very good job of removing the noise from 
the image, showing that it has good generalization properties. As 
well, there is good enhancement resulting from merging of new areas. 
Boundaries and linear features have become more discrete, however
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there is some addition of information, implying distortion along 
boundaries. It is clear that the Butterworth filter with a 95 percent 
energy level gives the best overall representation.

The 95 percent Butterworth lowpass filter can be compared with the 
Minimum-Variance spatial filter used by Paine (1986), which is 
displayed in Figure 8. Both the spectral and spatial filters have good 
enhancement properties and generalize the data very well. Also, noise 
reduction is good in both cases. The major difference between these 
two methods is the superior boundary definition of the spatial filter. 
Also, the 95 percent lowpass filter tends to add information to the 
image.

Of the three energy levels used (90, 95, 99 percent) in the 
Butterworth highpass filter to try to enhance edges, the 95 percent 
level did the best job of defining the edges or linear features (see 
Figure 9). The 90 percent level caused the edges to thicken to the 
point where they were not clearly definable. On the other hand, the 
99 percent level filter did not define the edges well enough.

The 95 percent Butterworth highpass filter can be compared with the 
Gradient filter used by Paine (1986) for edge enhancement (see Figure 
10). In comparison, the 95 percent highpass filter performed rather 
poorly. The noise in the highpass filter masked the edges, whereas 
the spatial technique highlighted the edges very well and edge 
information can easily be extracted from that image.

CONCLUSIONS

The aim of this research was to utilize filtering techniques in the 
frequency domain in order to evaluate their usefullness for information 
extraction in surveying and mapping. It was found that the filters 
used were adequate, however not as good as spatial filters. Some 
explanations as to the apparent poorer performance of the Butterworth 
filters could be:
1) Errors were known to exist because of the prior classification 

process, and
2) The Butterworth filter is basically a global filtering technique as 

opposed to a local or regional spatial filter.

With a global type filter each pixel is being treated the same, in that a 
cut-off radius is chosen and the same degree of filtering is applied 
universally. With the local filter, each pixel is treated separately and 
is dependant upon the pixels immediately surrounding it. In this way 
each pixel is changed according to a majority rules type of philosophy. 
This implies that any partial errors introduced by the classification 
process will be taken care of, because these errors will be locally 
restricted and will not be propogated.

This research, however, did not cover the complete spectrum of filters 
that may be employed in the frequency domain. A logical extension 
would be to investigate frequency domain filters that act more like the 
local filters used in the spatial domain. These might give a more 
accurate representation of the data set. As well, one could begin to
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look at power spectrum plots and select the frequencies that contain 
the majority of the information in the data sets. Also, by utilizing 
bandlimited filters it may be possible to get more acceptable results.

Dave, J.V. and Gazdag,

Davis, J. C. (1973)
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Scale in km

Figure 1 : The Kananaskis Valley in Alberta

f(x,y)

Spatial domain

F(u,v)

Frequency domain

Figure 2: Window function and its Fourier Transform
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Figure 3: Circular pattern of Hamming window

Figure U: Unfiltered classified data set

Figure 5: Lowpass Butterworth filter (99 percent)
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Figure 6: Lowpass Butterworth filter (95 percent)

Figure 7: Lowpass Butterworth filter (90 percent)

Figure 8: Minimum-Variance spatial filter
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Figure 9: Highpass Butterworth filter (95 percent)

Figure 10: Gradient spatial filter
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